Crustal Heterogeneity of Antarctica Signals Spatially Variable Radiogenic Heat Production

Abstract Geothermal heat flow (GHF) is a key basal boundary condition for Antarctic ice‐sheet flow. Large‐scale variations are resolved by several recent models but knowledge of the smaller‐scale variations, crucial for ice sheet dynamics, is limited by unresolved variations in crustal radiogenic he...

Full description

Saved in:
Bibliographic Details
Main Authors: L. Li, A. R. A. Aitken
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2023GL106201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Geothermal heat flow (GHF) is a key basal boundary condition for Antarctic ice‐sheet flow. Large‐scale variations are resolved by several recent models but knowledge of the smaller‐scale variations, crucial for ice sheet dynamics, is limited by unresolved variations in crustal radiogenic heat production. To define this at continent‐scale we use 3D gravity inversion constrained by seismic Moho estimates to identify variations in crustal composition and geometry beneath thick ice. Geochemically‐defined empirical relationships between density and heat production capture the global average trend and its variability, and allow to estimate from upper‐crust density spatial variations in radiogenic heat production. Significant variations are observed typically 1.2–1.6 μW/m3, and as high as 2 μW/m3 in West Antarctica. The contribution to GHF from these heat‐production variations is similarly variable, typically 16–24 mW/m2 and up to 60 mW/m2. The mapped variations are significant for correctly representing GHF in Antarctica.
ISSN:0094-8276
1944-8007