Ultra-Thin Films of Poly(acrylic acid)/Silver Nanocomposite Coatings for Antimicrobial Applications

In this work not only colloids of poly(acrylic acid) (PAA) embedded with silver nanoparticles (Ag-NPs) but thin films (10 nm) also were deposited using electrospray deposition technique (ESD). A mixture of sodium borohydride (NaBH4) and ascorbic acid (AA) were utilized to reduce the silver ions to g...

Full description

Saved in:
Bibliographic Details
Main Authors: Alaa Fahmy, Wael H. Eisa, Mohamed Yosef, Ali Hassan
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2016/7489536
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work not only colloids of poly(acrylic acid) (PAA) embedded with silver nanoparticles (Ag-NPs) but thin films (10 nm) also were deposited using electrospray deposition technique (ESD). A mixture of sodium borohydride (NaBH4) and ascorbic acid (AA) were utilized to reduce the silver ions to generate Ag-NPs in the PAA matrix. Moreover, sodium tricitrate was used to stabilize the prepared colloids. The obtained colloids and films were characterized using UV-visible, transmission electron microscopy (TEM). UV-Vis results reveal that an absorption peak at 425 nm was observed in presence of PAA-AgNO3-AA-citrate-NaBH4. This peak is attributed to the well-known surface plasmon resonance of the silver bound in Ag-NPs, while the reduction was rendering and/or inhibiting in absence of the AA and citrate. FTIR spectroscopy was used to study the mechanism of the reaction process of silver nitrate with PAA. TEM images showed the well dispersion of Ag-NPs in the PAA matrix with average particle size of 8 nm. The antimicrobial studies showed that the Ag-NPs embedded in the PAA matrix have proven to have a significant antimicrobial activity against E. coli, B. subtilis, and C. albicans.
ISSN:2314-4920
2314-4939