Existence of normalized solutions for a Sobolev supercritical Schrödinger equation

This paper studies the existence of normalized solutions for the following Schrödinger equation with Sobolev supercritical growth: \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u = f(u)+\mu |u|^{p-2}u, \quad &\hbox{in}\;\mathbb{R}^N,\\ \int_{\mathbb{R}^N}|u|^2dx = a...

Full description

Saved in:
Bibliographic Details
Main Authors: Quanqing Li, Zhipeng Yang
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024316
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590767146663936
author Quanqing Li
Zhipeng Yang
author_facet Quanqing Li
Zhipeng Yang
author_sort Quanqing Li
collection DOAJ
description This paper studies the existence of normalized solutions for the following Schrödinger equation with Sobolev supercritical growth: \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u = f(u)+\mu |u|^{p-2}u, \quad &\hbox{in}\;\mathbb{R}^N,\\ \int_{\mathbb{R}^N}|u|^2dx = a^2, \end{cases} \end{equation*} $\end{document} where $ p > 2^*: = \frac{2N}{N-2} $, $ N\geq 3 $, $ a > 0 $, $ \lambda \in \mathbb{R} $ is an unknown Lagrange multiplier, $ V \in C(\mathbb{R}^N, \mathbb{R}) $, $ f $ satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case $ p > 2^* $, which represents an unfixed frequency problem.
format Article
id doaj-art-afd7ae6139d1485fbcf7ee9b757dc43c
institution Kabale University
issn 2688-1594
language English
publishDate 2024-12-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj-art-afd7ae6139d1485fbcf7ee9b757dc43c2025-01-23T07:53:06ZengAIMS PressElectronic Research Archive2688-15942024-12-0132126761677110.3934/era.2024316Existence of normalized solutions for a Sobolev supercritical Schrödinger equationQuanqing Li0Zhipeng Yang1Department of Mathematics, Honghe University, Mengzi 661100, ChinaDepartment of Mathematics, Yunnan Normal University, Kunming 650500, ChinaThis paper studies the existence of normalized solutions for the following Schrödinger equation with Sobolev supercritical growth: \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u = f(u)+\mu |u|^{p-2}u, \quad &\hbox{in}\;\mathbb{R}^N,\\ \int_{\mathbb{R}^N}|u|^2dx = a^2, \end{cases} \end{equation*} $\end{document} where $ p > 2^*: = \frac{2N}{N-2} $, $ N\geq 3 $, $ a > 0 $, $ \lambda \in \mathbb{R} $ is an unknown Lagrange multiplier, $ V \in C(\mathbb{R}^N, \mathbb{R}) $, $ f $ satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case $ p > 2^* $, which represents an unfixed frequency problem.https://www.aimspress.com/article/doi/10.3934/era.2024316normalized solutiontruncation techniquesobolev supercritical growth
spellingShingle Quanqing Li
Zhipeng Yang
Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
Electronic Research Archive
normalized solution
truncation technique
sobolev supercritical growth
title Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
title_full Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
title_fullStr Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
title_full_unstemmed Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
title_short Existence of normalized solutions for a Sobolev supercritical Schrödinger equation
title_sort existence of normalized solutions for a sobolev supercritical schrodinger equation
topic normalized solution
truncation technique
sobolev supercritical growth
url https://www.aimspress.com/article/doi/10.3934/era.2024316
work_keys_str_mv AT quanqingli existenceofnormalizedsolutionsforasobolevsupercriticalschrodingerequation
AT zhipengyang existenceofnormalizedsolutionsforasobolevsupercriticalschrodingerequation