Using Graph Theory to Assess the Interaction between Cerebral Function, Brain Hemodynamics, and Systemic Variables in Premature Infants

Graphs can be used to describe a great variety of real-world situations and have therefore been used extensively in different fields. In the present analysis, we use graphs to study the interaction between cerebral function, brain hemodynamics, and systemic variables in premature neonates. We used d...

Full description

Saved in:
Bibliographic Details
Main Authors: Dries Hendrikx, Liesbeth Thewissen, Anne Smits, Gunnar Naulaers, Karel Allegaert, Sabine Van Huffel, Alexander Caicedo
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/6504039
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphs can be used to describe a great variety of real-world situations and have therefore been used extensively in different fields. In the present analysis, we use graphs to study the interaction between cerebral function, brain hemodynamics, and systemic variables in premature neonates. We used data from a propofol dose-finding and pharmacodynamics study as a model in order to evaluate the performance of the graph measures to monitor signal interactions. Concomitant measurements of heart rate, mean arterial blood pressure, arterial oxygen saturation, regional cerebral oxygen saturation—measured by means of near-infrared spectroscopy—and electroencephalography were performed in 22 neonates undergoing INSURE (intubation, surfactant administration, and extubation). The graphs used to study the interaction between these signal modalities were constructed using the RBF kernel. Results indicate that propofol induces a decrease in the signal interaction up to 90 minutes after propofol administration, which is consistent with clinical observations published previously. The clinical recovery phase is mainly determined by the EEG dynamics, which were observed to recover much slower compared to the other modalities. In addition, we found a more pronounced loss in cerebral-systemic interactions with increasing propofol dose.
ISSN:1076-2787
1099-0526