Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions

Abstract Partial shading conditions (PSC) in photovoltaic (PV) systems degrade energy harvest by generating multi-peak power-voltage (P–V) curves, trapping conventional maximum power point tracking (MPPT) algorithms at local maxima. This paper presents a Multi-Peak to Single-Peak Conversion (MSMPPT)...

Full description

Saved in:
Bibliographic Details
Main Authors: Njimboh Henry Alombah, Ambe Harrison, Wulfran Fendzi Mbasso, Hamid Belghiti, Hilaire Bertrand Fotsin, Pradeep Jangir, Saad F. Al-Gahtani, Z. M. S. Elbarbary
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-98619-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850170845359505408
author Njimboh Henry Alombah
Ambe Harrison
Wulfran Fendzi Mbasso
Hamid Belghiti
Hilaire Bertrand Fotsin
Pradeep Jangir
Saad F. Al-Gahtani
Z. M. S. Elbarbary
author_facet Njimboh Henry Alombah
Ambe Harrison
Wulfran Fendzi Mbasso
Hamid Belghiti
Hilaire Bertrand Fotsin
Pradeep Jangir
Saad F. Al-Gahtani
Z. M. S. Elbarbary
author_sort Njimboh Henry Alombah
collection DOAJ
description Abstract Partial shading conditions (PSC) in photovoltaic (PV) systems degrade energy harvest by generating multi-peak power-voltage (P–V) curves, trapping conventional maximum power point tracking (MPPT) algorithms at local maxima. This paper presents a Multi-Peak to Single-Peak Conversion (MSMPPT) framework that enables conventional algorithms like Perturb & Observe (P&O) and Incremental Conductance (INC) to reliably track the global maximum power point (GMPP) under PSC without structural modifications. The framework operates via two stages: dynamic estimation of optimal voltage boundaries to shrink the GMPP search space to under 10% of the original P–V range, and active voltage regulation to enforce operation within this zone, effectively transforming the multi-peak curve into a single-peak profile. The proposed MSMPP-P&O and MSMPP-INC algorithms achieve 50% faster tracking (64 ms vs. 122 ms for P&O) and near-perfect steady-state efficiency under static shading, reducing power losses below 2%. In dynamic shading scenarios with abrupt irradiance shifts, MSMPPT maintains robustness with less than 1.5 W net loss, outperforming conventional methods that incur over 30 W of power losses. By eliminating oscillations and hotspot risks through voltage regulation, the framework retains algorithmic simplicity while enhancing performance under complex shading scenarios. Validated across benchmark shading profiles, MSMPPT demonstrates fidelity without requiring additional hardware or complex optimizers. This innovation bridges the gap between conventional MPPT simplicity and partial shading resilience, offering a cost-effective, scalable solution to boost PV system reliability in shading environments.
format Article
id doaj-art-afa9bb6787ca4885bedf005d0108ab20
institution OA Journals
issn 2045-2322
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-afa9bb6787ca4885bedf005d0108ab202025-08-20T02:20:23ZengNature PortfolioScientific Reports2045-23222025-04-0115112810.1038/s41598-025-98619-3Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditionsNjimboh Henry Alombah0Ambe Harrison1Wulfran Fendzi Mbasso2Hamid Belghiti3Hilaire Bertrand Fotsin4Pradeep Jangir5Saad F. Al-Gahtani6Z. M. S. Elbarbary7Department of Electrical and Electronics Engineering, College of Technology, University of BamendaDepartment of Electrical and Electronics Engineering, College of Technology (COT), University of BueaTechnology and Applied Sciences Laboratory, U.I.T. of DoualaUniversity of DoualaLaboratory of Engineering Sciences for Energy National School of Applied Sciences, University of Chouaib DoukkaliUnit of Condensed Matter Research, Electronics and Signal Processing, Faculty of Science, Department of Physics, LAMACET, University of DschangInnovation Center for Artificial Intelligence Applications, Yuan Ze UniversityElectrical Engineering Department, Faculty of Engineering, King Khalid UniversityDepartment of Electrical Engineering, College of Engineering, King Khalid UniversityAbstract Partial shading conditions (PSC) in photovoltaic (PV) systems degrade energy harvest by generating multi-peak power-voltage (P–V) curves, trapping conventional maximum power point tracking (MPPT) algorithms at local maxima. This paper presents a Multi-Peak to Single-Peak Conversion (MSMPPT) framework that enables conventional algorithms like Perturb & Observe (P&O) and Incremental Conductance (INC) to reliably track the global maximum power point (GMPP) under PSC without structural modifications. The framework operates via two stages: dynamic estimation of optimal voltage boundaries to shrink the GMPP search space to under 10% of the original P–V range, and active voltage regulation to enforce operation within this zone, effectively transforming the multi-peak curve into a single-peak profile. The proposed MSMPP-P&O and MSMPP-INC algorithms achieve 50% faster tracking (64 ms vs. 122 ms for P&O) and near-perfect steady-state efficiency under static shading, reducing power losses below 2%. In dynamic shading scenarios with abrupt irradiance shifts, MSMPPT maintains robustness with less than 1.5 W net loss, outperforming conventional methods that incur over 30 W of power losses. By eliminating oscillations and hotspot risks through voltage regulation, the framework retains algorithmic simplicity while enhancing performance under complex shading scenarios. Validated across benchmark shading profiles, MSMPPT demonstrates fidelity without requiring additional hardware or complex optimizers. This innovation bridges the gap between conventional MPPT simplicity and partial shading resilience, offering a cost-effective, scalable solution to boost PV system reliability in shading environments.https://doi.org/10.1038/s41598-025-98619-3Photovoltaic (PV)Partial shading conditions (PSC)Maximum power point (MPP)Multiple-to-single maximum power point tracking (MSMPPT)Multiple-to-single MPP conversion
spellingShingle Njimboh Henry Alombah
Ambe Harrison
Wulfran Fendzi Mbasso
Hamid Belghiti
Hilaire Bertrand Fotsin
Pradeep Jangir
Saad F. Al-Gahtani
Z. M. S. Elbarbary
Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
Scientific Reports
Photovoltaic (PV)
Partial shading conditions (PSC)
Maximum power point (MPP)
Multiple-to-single maximum power point tracking (MSMPPT)
Multiple-to-single MPP conversion
title Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
title_full Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
title_fullStr Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
title_full_unstemmed Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
title_short Multiple-to-single maximum power point tracking for empowering conventional MPPT algorithms under partial shading conditions
title_sort multiple to single maximum power point tracking for empowering conventional mppt algorithms under partial shading conditions
topic Photovoltaic (PV)
Partial shading conditions (PSC)
Maximum power point (MPP)
Multiple-to-single maximum power point tracking (MSMPPT)
Multiple-to-single MPP conversion
url https://doi.org/10.1038/s41598-025-98619-3
work_keys_str_mv AT njimbohhenryalombah multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT ambeharrison multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT wulfranfendzimbasso multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT hamidbelghiti multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT hilairebertrandfotsin multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT pradeepjangir multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT saadfalgahtani multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions
AT zmselbarbary multipletosinglemaximumpowerpointtrackingforempoweringconventionalmpptalgorithmsunderpartialshadingconditions