Research on the Nonlinear Relationship Between Carbon Emissions from Residential Land and the Built Environment: A Case Study of Susong County, Anhui Province Using the XGBoost-SHAP Model
Residential land is the basic unit of urban-scale carbon emissions (CEs). Quantifying and predicting CEs from residential land are conducive to achieving urban carbon neutrality. This study took 84 residential communities in Susong County, Anhui Province as its research object, exploring the nonline...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Land |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-445X/14/3/440 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Residential land is the basic unit of urban-scale carbon emissions (CEs). Quantifying and predicting CEs from residential land are conducive to achieving urban carbon neutrality. This study took 84 residential communities in Susong County, Anhui Province as its research object, exploring the nonlinear relationship between the urban built environment and CEs from residential land. By identifying CEs from residential land through building electricity consumption, 14 built environment indicators, including land area (LA), floor area ratio (FAR), greening ratio (GA), building density (BD), gross floor area (GFA), land use mix rate (Phh), and permanent population density (PPD), were selected to establish an interpretable machine learning (ML) model based on the XGBoost-SHAP attribution analysis framework. The research results show that, first, the goodness of fit of the XGBoost model reached 91.9%, and its prediction accuracy was better than that of gradient boosting decision tree (GBDT), random forest (RF), the Adaboost model, and the traditional logistic model. Second, compared with other ML models, the XGBoost-SHAP model explained the influencing factors of CEs from residential land more clearly. The SHAP attribution analysis results indicate that BD, FAR, and Phh were the most important factors affecting CEs. Third, there was a significant nonlinear relationship and threshold effect between built environment characteristic variables and CEs from residential land. Fourth, there was an interaction between different dimensions of environmental factors, and BD, FAR, and Phh played a dominant role in the interaction. Reducing FAR is considered to be an effective CE reduction strategy. This research provides practical suggestions for urban planners on reducing CEs from residential land, which has important policy implications and practical significance. |
|---|---|
| ISSN: | 2073-445X |