Graphs which have pancyclic complements

Let p and q denote the number of vertices and edges of a graph G, respectively. Let Δ(G) denote the maximum degree of G, and G¯ the complement of G. A graph G of order p is said to be pancyclic if G contains a cycle of each length n, 3≤n≤p. For a nonnegative integer k, a connected graph G is said to...

Full description

Saved in:
Bibliographic Details
Main Author: H. Joseph Straight
Format: Article
Language:English
Published: Wiley 1978-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171278000216
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let p and q denote the number of vertices and edges of a graph G, respectively. Let Δ(G) denote the maximum degree of G, and G¯ the complement of G. A graph G of order p is said to be pancyclic if G contains a cycle of each length n, 3≤n≤p. For a nonnegative integer k, a connected graph G is said to be of rank k if q=p−1+k. (For k equal to 0 and 1 these graphs are called trees and unicyclic graphs, respectively.)
ISSN:0161-1712
1687-0425