Research on Literary Translation Based on the Improved Optimization Model

Machine translation is widely used in people’s daily lives and production, occupying an important position. In order to improve the accuracy of the literary intelligent translation, research on literary intelligent translation is based on the improved optimization model. Based on semantic features,...

Full description

Saved in:
Bibliographic Details
Main Author: Hongjian Liu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2022/1329632
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Machine translation is widely used in people’s daily lives and production, occupying an important position. In order to improve the accuracy of the literary intelligent translation, research on literary intelligent translation is based on the improved optimization model. Based on semantic features, the semantic ontology optimization model including an encoder and a decoder is created by machine translation. In order to improve the accuracy of the intelligent translation literature of the semantic ontology optimization model, the conversion layer, including the forward neural network layer, residual connection layer, and normalization layer, is added between the encoder and decoder of the semantic ontology optimization model. An improved optimization model is established, and syntax conversion is realized by using the conversion layer, which completes the intelligent translation of literature. It is found that the BLEU value of using this method to translate literary sentences can reach 17.23 when the number of training steps is set as 8000, and the training time is low. The translation result has a low correlation misalignment rate, which can meet the user’s literary translation needs.
ISSN:1607-887X