XGBoost-SHAP-based interpretable diagnostic framework for knee osteoarthritis: a population-based retrospective cohort study

Abstract Objective To use routine demographic and clinical data to develop an interpretable individual-level machine learning (ML) model to diagnose knee osteoarthritis (KOA) and to identify highly ranked features. Methods In this retrospective, population-based cohort study, anonymized questionnair...

Full description

Saved in:
Bibliographic Details
Main Authors: Zijuan Fan, Wenzhu Song, Yan Ke, Ligan Jia, Songyan Li, Jiao Jiao Li, Yuqing Zhang, Jianhao Lin, Bin Wang
Format: Article
Language:English
Published: BMC 2024-12-01
Series:Arthritis Research & Therapy
Subjects:
Online Access:https://doi.org/10.1186/s13075-024-03450-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective To use routine demographic and clinical data to develop an interpretable individual-level machine learning (ML) model to diagnose knee osteoarthritis (KOA) and to identify highly ranked features. Methods In this retrospective, population-based cohort study, anonymized questionnaire data was retrieved from the Wu Chuan KOA Study, Inner Mongolia, China. After feature selections, participants were divided in a 7:3 ratio into training and test sets. Class balancing was applied to the training set for data augmentation. Four ML classifiers were compared by cross-validation within the training set and their performance was further analyzed with an unseen test set. Classifications were evaluated using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, area under the curve(AUC), G-means, and F1 scores. The best model was explained using Shapley values to extract highly ranked features. Results A total of 1188 participants were investigated in this study, among whom 26.3% were diagnosed with KOA. Comparatively, XGBoost with Boruta exhibited the highest classification performance among the four models, with an AUC of 0.758, G-means of 0.800, and F1 scores of 0.703. The SHAP method reveals the top 17 features of KOA according to the importance ranking, and the average of the experience of joint pain was recognized as the most important features. Conclusions Our study highlights the usefulness of machine learning in unveiling important factors that influence the diagnosis of KOA to guide new prevention strategies. Further work is needed to validate this approach.
ISSN:1478-6362