Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification
<italic>Goal:</italic> This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing,...
Saved in:
Main Authors: | Benjamin P. Veasey, Amir A. Amini |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Open Journal of Engineering in Medicine and Biology |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10843806/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Squeeze-and-Excitation Vision Transformer for Lung Nodule Classification
by: Xiaozhong Xue, et al.
Published: (2025-01-01) -
MAEMC-NET: a hybrid self-supervised learning method for predicting the malignancy of solitary pulmonary nodules from CT images
by: Tianhu Zhao, et al.
Published: (2025-02-01) -
ClassWise-SAM-Adapter: Parameter-Efficient Fine-Tuning Adapts Segment Anything to SAR Domain for Semantic Segmentation
by: Xinyang Pu, et al.
Published: (2025-01-01) -
ThyroNet-X4 genesis: an advanced deep learning model for auxiliary diagnosis of thyroid nodules’ malignancy
by: Xiaoxue Wang, et al.
Published: (2025-02-01) -
Transforming Alzheimer’s Disease Diagnosis: Implementing Vision Transformer (ViT) for MRI Images Classification
by: Dian Kurniasari, et al.
Published: (2025-01-01)