Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO<sub>4</sub> for the Removal of Contaminants of Emerging Concern

Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better pe...

Full description

Saved in:
Bibliographic Details
Main Authors: Marin Popović, Suresh Kumar Pandey, Josipa Papac Zjačić, Vladimir Dananić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Andraž Šuligoj, Urška Lavrenčič Štangar, Ana Lončarić Božić
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/11/2454
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better performance. Herein, we report the preparation of surface-decorated BiVO<sub>4</sub> with both a noble metal (Ag) and transition metal (Fe). The structural, morphological, and semiconducting features of the material were examined employing various techniques (XRD, SEM, UV-DRS, PL, and photoelectrochemical tests). The band gap of surface-modified BiVO<sub>4</sub> is slightly narrower compared to pristine material, which is further validated by HOMO-LUMO gaps obtained through theoretical modeling approaches. The recombination of photogenerated charges was successfully reduced in the case of Ag–Fe–BiVO<sub>4</sub>, as proven by lower PL intensity and increased current density. The comparative photocatalytic degradation of the CECs ciprofloxacin (CIP) and perfluorooctanoic acid (PFOA) was conducted employing pristine BiVO<sub>4</sub> and its two surface-modified analogues (Ag–BiVO<sub>4</sub>, and Ag–Fe–BiVO<sub>4</sub>) under solar light. Ag–Fe–BiVO<sub>4</sub> was shown to be the most efficient; however, its effectiveness differed depending on CEC type. Under the same process conditions, degradation of CIP reached 93.9%, while PFOA was degraded only partially (22.9%).
ISSN:1420-3049