Machine learning identifies key individual and nation-level factors predicting climate-relevant beliefs and behaviors

Abstract While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Boryana Todorova, David Steyrl, Matthew J. Hornsey, Samuel Pearson, Cameron Brick, Florian Lange, Jay J. Van Bavel, Madalina Vlasceanu, Claus Lamm, Kimberly C. Doell
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Climate Action
Online Access:https://doi.org/10.1038/s44168-025-00251-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate change belief, policy support, willingness to share information on social media, and a pro-environmental behavioral task) are predictable and to rank 19 individual- and nation-level predictors in terms of their importance across 55 countries (N = 4635). We find notable differences in explained variance for the outcomes (e.g., 57% for climate change belief vs. 10% for pro-environmental behavior). Four predictors had consistent effects across all outcomes: environmentalist identity, trust in climate science, internal environmental motivation, and the Human Development Index. However, most of the predictors show divergent patterns, predicting some but not all outcomes or even having opposite effects. To better capture this complexity, future models should include multi-level factors and consider the different contexts (e.g., public vs private) in which climate-related cognition and action emerge.
ISSN:2731-9814