Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride

Uranium mononitride (UN) is a promising advanced nuclear fuel due to its high thermal conductivity and high fissile density. However, many aspects of its mechanical behavior, particularly at reactor-relevant conditions, remain unclear. In this study, molecular dynamics (MD) simulations were employed...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed AbdulHameed, Benjamin Beeler, Antoine Claisse
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/5/2666
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850228242165792768
author Mohamed AbdulHameed
Benjamin Beeler
Antoine Claisse
author_facet Mohamed AbdulHameed
Benjamin Beeler
Antoine Claisse
author_sort Mohamed AbdulHameed
collection DOAJ
description Uranium mononitride (UN) is a promising advanced nuclear fuel due to its high thermal conductivity and high fissile density. However, many aspects of its mechanical behavior, particularly at reactor-relevant conditions, remain unclear. In this study, molecular dynamics (MD) simulations were employed to investigate the deformation behavior and dislocation motion in UN. We found that the Kocevski potential predicts the principal slip system as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mrow><mo>⟨</mo><mn>110</mn><mo>⟩</mo></mrow><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, aligning with experimental data. On the other hand, the Tseplyaev potential predicts slip to primarily occur on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mrow><mo>⟨</mo><mn>110</mn><mo>⟩</mo></mrow><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. MD simulations of stress–strain behavior were used to estimate the nanoindentation hardness, revealing that the Kocevski potential accurately predicts hardness even though it fails to model dynamic plasticity. Complete dislocation mobility functions have been fitted for the edge and screw dislocations in both the thermally activated and phonon-drag regimes. The 300 K linear mobility of the edge dislocation using the Tseplyaev potential was found to be 817 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Pa</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="-0.166667em"></mspace><mo>·</mo><mspace width="-0.166667em"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, whereas that of the screw dislocation using the Kocevski potential was found to be 4546 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Pa</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="-0.166667em"></mspace><mo>·</mo><mspace width="-0.166667em"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. At intermediate stresses, we observed that the subsonic steady-state motion of the edge dislocation in UN is intermittently interrupted by velocity jumps, reaching the average sound velocity. Finally, the threshold Schmid stress is calculated as 179–197 MPa, which gives an upper-limit estimate of the uniaxial yield stress of polycrystalline UN of 548–603 MPa. These findings, including the fitted dislocation mobility function, provide essential input for future plasticity and dislocation dynamics models of nuclear fuels.
format Article
id doaj-art-aea00a522ff84922b789d7dac3463dc3
institution OA Journals
issn 2076-3417
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj-art-aea00a522ff84922b789d7dac3463dc32025-08-20T02:04:35ZengMDPI AGApplied Sciences2076-34172025-03-01155266610.3390/app15052666Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium MononitrideMohamed AbdulHameed0Benjamin Beeler1Antoine Claisse2Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USADepartment of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USAWestinghouse Electric Sweden, SE 72163 Vasteras, SwedenUranium mononitride (UN) is a promising advanced nuclear fuel due to its high thermal conductivity and high fissile density. However, many aspects of its mechanical behavior, particularly at reactor-relevant conditions, remain unclear. In this study, molecular dynamics (MD) simulations were employed to investigate the deformation behavior and dislocation motion in UN. We found that the Kocevski potential predicts the principal slip system as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mrow><mo>⟨</mo><mn>110</mn><mo>⟩</mo></mrow><mrow><mo>{</mo><mn>110</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, aligning with experimental data. On the other hand, the Tseplyaev potential predicts slip to primarily occur on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mrow><mo>⟨</mo><mn>110</mn><mo>⟩</mo></mrow><mrow><mo>{</mo><mn>111</mn><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. MD simulations of stress–strain behavior were used to estimate the nanoindentation hardness, revealing that the Kocevski potential accurately predicts hardness even though it fails to model dynamic plasticity. Complete dislocation mobility functions have been fitted for the edge and screw dislocations in both the thermally activated and phonon-drag regimes. The 300 K linear mobility of the edge dislocation using the Tseplyaev potential was found to be 817 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Pa</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="-0.166667em"></mspace><mo>·</mo><mspace width="-0.166667em"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, whereas that of the screw dislocation using the Kocevski potential was found to be 4546 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>Pa</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width="-0.166667em"></mspace><mo>·</mo><mspace width="-0.166667em"></mspace><msup><mi mathvariant="normal">s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. At intermediate stresses, we observed that the subsonic steady-state motion of the edge dislocation in UN is intermittently interrupted by velocity jumps, reaching the average sound velocity. Finally, the threshold Schmid stress is calculated as 179–197 MPa, which gives an upper-limit estimate of the uniaxial yield stress of polycrystalline UN of 548–603 MPa. These findings, including the fitted dislocation mobility function, provide essential input for future plasticity and dislocation dynamics models of nuclear fuels.https://www.mdpi.com/2076-3417/15/5/2666uranium nitridemolecular dynamicsplastic deformationPeierls stressdislocation mobility
spellingShingle Mohamed AbdulHameed
Benjamin Beeler
Antoine Claisse
Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
Applied Sciences
uranium nitride
molecular dynamics
plastic deformation
Peierls stress
dislocation mobility
title Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
title_full Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
title_fullStr Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
title_full_unstemmed Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
title_short Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
title_sort atomistic investigation of plastic deformation and dislocation motion in uranium mononitride
topic uranium nitride
molecular dynamics
plastic deformation
Peierls stress
dislocation mobility
url https://www.mdpi.com/2076-3417/15/5/2666
work_keys_str_mv AT mohamedabdulhameed atomisticinvestigationofplasticdeformationanddislocationmotioninuraniummononitride
AT benjaminbeeler atomisticinvestigationofplasticdeformationanddislocationmotioninuraniummononitride
AT antoineclaisse atomisticinvestigationofplasticdeformationanddislocationmotioninuraniummononitride