The Generalized Bisymmetric (Bi-Skew-Symmetric) Solutions of a Class of Matrix Equations and Its Least Squares Problem
The solvability conditions and the general expression of the generalized bisymmetric and bi-skew-symmetric solutions of a class of matrix equations (AX=B, XC=D) are established, respectively. If the solvability conditions are not satisfied, the generalized bisymmetric and bi-skew-symmetric least squ...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/239465 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The solvability conditions and the general expression of the generalized bisymmetric and bi-skew-symmetric solutions of a class of matrix equations (AX=B, XC=D) are established, respectively. If the solvability conditions are not satisfied, the generalized bisymmetric and bi-skew-symmetric least squares solutions of the matrix equations are considered. In addition, two algorithms are provided to compute the generalized bisymmetric and bi-skew-symmetric least squares solutions. Numerical experiments illustrate that the results are reasonable. |
---|---|
ISSN: | 1085-3375 1687-0409 |