Inverse Problem for a Time-Dependent Source in Distributed-Order Time-Space Fractional Diffusion Equations

This paper investigates the problem of identifying a time-dependent source term in distributed-order time-space fractional diffusion equations (FDEs) based on boundary observation data. Firstly, the existence, uniqueness, and regularity of the solution to the direct problem are proved. Using the reg...

Full description

Saved in:
Bibliographic Details
Main Authors: Yushan Li, Huimin Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/7/468
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the problem of identifying a time-dependent source term in distributed-order time-space fractional diffusion equations (FDEs) based on boundary observation data. Firstly, the existence, uniqueness, and regularity of the solution to the direct problem are proved. Using the regularity of the solution and a Gronwall inequality with a weakly singular kernel, the uniqueness and stability estimates of the solution to the inverse problem are obtained. Subsequently, the inverse source problem is transformed into a minimization problem of a functional using the Tikhonov regularization method, and an approximate solution is obtained by the conjugate gradient method. Numerical experiments confirm that the method provides both accurate and robust results.
ISSN:2504-3110