Image Reconstruction Algorithm Based on Extreme Learning Machine for Electrical Capacitance Tomography

Aiming at the problem that the traditional ECT is not accurate in complex situations, this paper proposes a depth learning based inversion method Through the improvement and optimization of the traditional extreme learning machine, the image feature information obtained by the reconstructed image me...

Full description

Saved in:
Bibliographic Details
Main Authors: SU Ziheng, CHEN Deyun, WANG Lili
Format: Article
Language:zho
Published: Harbin University of Science and Technology Publications 2020-10-01
Series:Journal of Harbin University of Science and Technology
Subjects:
Online Access:https://hlgxb.hrbust.edu.cn/#/digest?ArticleID=1869
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the problem that the traditional ECT is not accurate in complex situations, this paper proposes a depth learning based inversion method Through the improvement and optimization of the traditional extreme learning machine, the image feature information obtained by the reconstructed image method is used as the training data, and the result obtained by inputting the data into the predictive model is used as the prior information The cost function is used to encapsulate the prior knowledge and domain expertise, and spatial regularizers and time regularizers are introduced to enhance sparsity The separated Bregman (SB) algorithm and the iterative shrinkage threshold (FIST) method are used to solve the specified cost function The final imaging result is obtained The simulation results show that the image reconstructed by this method has less than 10% error compared with the original flow pattern, and reduces artifacts and distortion, which improves the reconstructed image quality
ISSN:1007-2683