Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates

Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and c...

Full description

Saved in:
Bibliographic Details
Main Authors: Nazareno Gonzalez, Melanie Pérez Küper, Matías Garcia Fallit, Jorge A. Peña Agudelo, Alejandro Nicola Candia, Maicol Suarez Velandia, Ana Clara Romero, Guillermo Videla Richardson, Marianela Candolfi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/15/6/637
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849435279095496704
author Nazareno Gonzalez
Melanie Pérez Küper
Matías Garcia Fallit
Jorge A. Peña Agudelo
Alejandro Nicola Candia
Maicol Suarez Velandia
Ana Clara Romero
Guillermo Videla Richardson
Marianela Candolfi
author_facet Nazareno Gonzalez
Melanie Pérez Küper
Matías Garcia Fallit
Jorge A. Peña Agudelo
Alejandro Nicola Candia
Maicol Suarez Velandia
Ana Clara Romero
Guillermo Videla Richardson
Marianela Candolfi
author_sort Nazareno Gonzalez
collection DOAJ
description Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential. Research Design and Methods: We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated. Results: The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM. Conclusions: Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments.
format Article
id doaj-art-ae1e3e64e0ce41eea249ef91d1a5152f
institution Kabale University
issn 2076-3425
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Brain Sciences
spelling doaj-art-ae1e3e64e0ce41eea249ef91d1a5152f2025-08-20T03:26:21ZengMDPI AGBrain Sciences2076-34252025-06-0115663710.3390/brainsci15060637Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic CandidatesNazareno Gonzalez0Melanie Pérez Küper1Matías Garcia Fallit2Jorge A. Peña Agudelo3Alejandro Nicola Candia4Maicol Suarez Velandia5Ana Clara Romero6Guillermo Videla Richardson7Marianela Candolfi8Instituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires C1121A6B, ArgentinaInstituto de Investigaciones Biomédicas (INBIOMED, CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, ArgentinaBackground: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential. Research Design and Methods: We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated. Results: The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM. Conclusions: Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments.https://www.mdpi.com/2076-3425/15/6/637glioblastomadrug repurposingblood-brain barrierDaporinadpredictive modelingNAMPT inhibitor
spellingShingle Nazareno Gonzalez
Melanie Pérez Küper
Matías Garcia Fallit
Jorge A. Peña Agudelo
Alejandro Nicola Candia
Maicol Suarez Velandia
Ana Clara Romero
Guillermo Videla Richardson
Marianela Candolfi
Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
Brain Sciences
glioblastoma
drug repurposing
blood-brain barrier
Daporinad
predictive modeling
NAMPT inhibitor
title Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
title_full Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
title_fullStr Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
title_full_unstemmed Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
title_short Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
title_sort integrated workflow for drug repurposing in glioblastoma computational prediction and preclinical validation of therapeutic candidates
topic glioblastoma
drug repurposing
blood-brain barrier
Daporinad
predictive modeling
NAMPT inhibitor
url https://www.mdpi.com/2076-3425/15/6/637
work_keys_str_mv AT nazarenogonzalez integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT melanieperezkuper integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT matiasgarciafallit integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT jorgeapenaagudelo integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT alejandronicolacandia integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT maicolsuarezvelandia integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT anaclararomero integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT guillermovidelarichardson integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates
AT marianelacandolfi integratedworkflowfordrugrepurposinginglioblastomacomputationalpredictionandpreclinicalvalidationoftherapeuticcandidates