Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida

Abstract The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan D. Tibocha-Bonilla, Vishant Gandhi, Chloe Lieng, Oriane Moyne, Rodrigo Santibáñez-Palominos, Karsten Zengler
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Systems Biology and Applications
Online Access:https://doi.org/10.1038/s41540-025-00521-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849325819506196480
author Juan D. Tibocha-Bonilla
Vishant Gandhi
Chloe Lieng
Oriane Moyne
Rodrigo Santibáñez-Palominos
Karsten Zengler
author_facet Juan D. Tibocha-Bonilla
Vishant Gandhi
Chloe Lieng
Oriane Moyne
Rodrigo Santibáñez-Palominos
Karsten Zengler
author_sort Juan D. Tibocha-Bonilla
collection DOAJ
description Abstract The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers valuable insights into P. putida’s proteome allocation and presents a powerful tool for understanding resource allocation in this industrially relevant microorganism.
format Article
id doaj-art-ae0a3153aa7e43b9812382c86ffcb44d
institution Kabale University
issn 2056-7189
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series npj Systems Biology and Applications
spelling doaj-art-ae0a3153aa7e43b9812382c86ffcb44d2025-08-20T03:48:18ZengNature Portfolionpj Systems Biology and Applications2056-71892025-05-011111910.1038/s41540-025-00521-1Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putidaJuan D. Tibocha-Bonilla0Vishant Gandhi1Chloe Lieng2Oriane Moyne3Rodrigo Santibáñez-Palominos4Karsten Zengler5Bioinformatics and Systems Biology Graduate Program, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoDepartment of Pediatrics, University of California, San DiegoDepartment of Pediatrics, University of California, San DiegoDepartment of Pediatrics, University of California, San DiegoDepartment of Bioengineering, University of California, San DiegoAbstract The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs and proteome allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers valuable insights into P. putida’s proteome allocation and presents a powerful tool for understanding resource allocation in this industrially relevant microorganism.https://doi.org/10.1038/s41540-025-00521-1
spellingShingle Juan D. Tibocha-Bonilla
Vishant Gandhi
Chloe Lieng
Oriane Moyne
Rodrigo Santibáñez-Palominos
Karsten Zengler
Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
npj Systems Biology and Applications
title Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
title_full Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
title_fullStr Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
title_full_unstemmed Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
title_short Model of metabolism and gene expression predicts proteome allocation in Pseudomonas putida
title_sort model of metabolism and gene expression predicts proteome allocation in pseudomonas putida
url https://doi.org/10.1038/s41540-025-00521-1
work_keys_str_mv AT juandtibochabonilla modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida
AT vishantgandhi modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida
AT chloelieng modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida
AT orianemoyne modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida
AT rodrigosantibanezpalominos modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida
AT karstenzengler modelofmetabolismandgeneexpressionpredictsproteomeallocationinpseudomonasputida