Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise

IntroductionIncreased interest in unconventional exercise such as vinyasa yoga has outpaced our understanding of the physiological response to yoga exercise. The objective of the current study was to evaluate changes in urinary metabolites (i.e., alanine, phenylalanine, glycine, choline, taurine, cr...

Full description

Saved in:
Bibliographic Details
Main Authors: Colin E. S. Campbell, Carl J. Murphy, Zeinab Barati, Robert H. Coker
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-04-01
Series:Frontiers in Sports and Active Living
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fspor.2025.1556989/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850201911670603776
author Colin E. S. Campbell
Carl J. Murphy
Zeinab Barati
Robert H. Coker
author_facet Colin E. S. Campbell
Carl J. Murphy
Zeinab Barati
Robert H. Coker
author_sort Colin E. S. Campbell
collection DOAJ
description IntroductionIncreased interest in unconventional exercise such as vinyasa yoga has outpaced our understanding of the physiological response to yoga exercise. The objective of the current study was to evaluate changes in urinary metabolites (i.e., alanine, phenylalanine, glycine, choline, taurine, creatinine, creatine, dimethylamine, citrate, pyruvate, acetate, and beta-hydroxybutyrate) elicited by vinyasa yoga compared to moderate intensity aerobic exercise in young healthy adults.MethodsTwelve participants, six women and six men, completed a vinyasa yoga exercise session (VY) and a moderate intensity cycle ergometer exercise session (ME) in a sequential fashion. The intensity of the ME was matched to heart rate and rating of perceived exertion elicited during the initial VY. Urine samples were collected at baseline and following the completion of each of VY and ME. Metabolite concentrations after each exercise were normalized to their baseline levels to obtain a relative exercise-induced change in concentration. We hypothesized that activation of large muscle groups in the lower extremities would foster greater ME-induced alterations in metabolites.ResultsExercise-induced changes in urinary concentrations of phenylalanine, creatinine, creatine, glycine, choline, taurine, dimethylamine, citrate, pyruvate, alanine, and beta-hydroxybutyrate were greater in ME compared to VY (P < 0.05). There was no difference between the exercise-induced changes in lactate between groups (P < 0.05).DiscussionThe results of this study demonstrate that ME promotes more robust changes in urinary metabolites compared to VY. These differences may be due to a greater localized workload on the large muscle groups of the lower extremities during ME, and potentially highlight the distributed metabolic demand of VY.
format Article
id doaj-art-adeb54f3cf01434e8f96c324c8f701b4
institution OA Journals
issn 2624-9367
language English
publishDate 2025-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Sports and Active Living
spelling doaj-art-adeb54f3cf01434e8f96c324c8f701b42025-08-20T02:11:54ZengFrontiers Media S.A.Frontiers in Sports and Active Living2624-93672025-04-01710.3389/fspor.2025.15569891556989Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exerciseColin E. S. Campbell0Carl J. Murphy1Zeinab Barati2Robert H. Coker3Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United StatesInstitute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United StatesInstitute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United StatesMontana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, United StatesIntroductionIncreased interest in unconventional exercise such as vinyasa yoga has outpaced our understanding of the physiological response to yoga exercise. The objective of the current study was to evaluate changes in urinary metabolites (i.e., alanine, phenylalanine, glycine, choline, taurine, creatinine, creatine, dimethylamine, citrate, pyruvate, acetate, and beta-hydroxybutyrate) elicited by vinyasa yoga compared to moderate intensity aerobic exercise in young healthy adults.MethodsTwelve participants, six women and six men, completed a vinyasa yoga exercise session (VY) and a moderate intensity cycle ergometer exercise session (ME) in a sequential fashion. The intensity of the ME was matched to heart rate and rating of perceived exertion elicited during the initial VY. Urine samples were collected at baseline and following the completion of each of VY and ME. Metabolite concentrations after each exercise were normalized to their baseline levels to obtain a relative exercise-induced change in concentration. We hypothesized that activation of large muscle groups in the lower extremities would foster greater ME-induced alterations in metabolites.ResultsExercise-induced changes in urinary concentrations of phenylalanine, creatinine, creatine, glycine, choline, taurine, dimethylamine, citrate, pyruvate, alanine, and beta-hydroxybutyrate were greater in ME compared to VY (P < 0.05). There was no difference between the exercise-induced changes in lactate between groups (P < 0.05).DiscussionThe results of this study demonstrate that ME promotes more robust changes in urinary metabolites compared to VY. These differences may be due to a greater localized workload on the large muscle groups of the lower extremities during ME, and potentially highlight the distributed metabolic demand of VY.https://www.frontiersin.org/articles/10.3389/fspor.2025.1556989/fullurinemetabolismexercise modalitynuclear magnetic resonanceunconventional exercise
spellingShingle Colin E. S. Campbell
Carl J. Murphy
Zeinab Barati
Robert H. Coker
Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
Frontiers in Sports and Active Living
urine
metabolism
exercise modality
nuclear magnetic resonance
unconventional exercise
title Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
title_full Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
title_fullStr Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
title_full_unstemmed Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
title_short Acute changes in urinary metabolites: vinyasa yoga compared to cycle ergometer exercise
title_sort acute changes in urinary metabolites vinyasa yoga compared to cycle ergometer exercise
topic urine
metabolism
exercise modality
nuclear magnetic resonance
unconventional exercise
url https://www.frontiersin.org/articles/10.3389/fspor.2025.1556989/full
work_keys_str_mv AT colinescampbell acutechangesinurinarymetabolitesvinyasayogacomparedtocycleergometerexercise
AT carljmurphy acutechangesinurinarymetabolitesvinyasayogacomparedtocycleergometerexercise
AT zeinabbarati acutechangesinurinarymetabolitesvinyasayogacomparedtocycleergometerexercise
AT roberthcoker acutechangesinurinarymetabolitesvinyasayogacomparedtocycleergometerexercise