An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines
Permanent Magnet Synchronous Machines (PMSMs) are extensively utilized for their ability to deliver accurate position control, and the equivalent circuit characteristics of these machines are essential in several applications, particularly in formulating the control strategy. The study introduces an...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11021566/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849470989555990528 |
|---|---|
| author | Sema Nur Ipek Nur Bekiroglu Murat Taskiran |
| author_facet | Sema Nur Ipek Nur Bekiroglu Murat Taskiran |
| author_sort | Sema Nur Ipek |
| collection | DOAJ |
| description | Permanent Magnet Synchronous Machines (PMSMs) are extensively utilized for their ability to deliver accurate position control, and the equivalent circuit characteristics of these machines are essential in several applications, particularly in formulating the control strategy. The study introduces an ensemble-based methodology for estimating the equivalent circuit parameters of PMSMs consisting of phase resistance (R), magnetizing reactance (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {m}}$ </tex-math></inline-formula>), and leakage reactance (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {l}}$ </tex-math></inline-formula>) via manufacturer catalog data, which eliminates the necessity for experimental setups, high-quality real-time data, and operational disruptions. Six machine learning models-Multilayer Perceptron (MLP), Cascade Forward Neural Network (CFNN), Layer Recurrent Neural Network (LRNN), Transformer-like Network (TRF), Decision Tree (DT), and Support Vector Regression (SVR)–were evaluated in the first stage of the study. Among these, LRNN and TRF showed the best performance, with LRNN achieving the highest <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$0.9212~\pm ~0.0973$ </tex-math></inline-formula>) for the (R) parameter, followed by TRF (<inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula>: <inline-formula> <tex-math notation="LaTeX">$0.9163~\pm ~0.0561$ </tex-math></inline-formula>). An averaging voting ensemble model is developed by integrating the two highest-performing algorithms, LRNN and TRF, leveraging the strengths of both algorithms. The ensemble model combining TRF and LRNN further improved predictions, achieving an <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$0.9804~\pm ~0.0151$ </tex-math></inline-formula> and TGF of <inline-formula> <tex-math notation="LaTeX">$0.9827~\pm ~0.0173$ </tex-math></inline-formula> for R, <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$0.9615~\pm ~0.0306$ </tex-math></inline-formula> for (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {m}}$ </tex-math></inline-formula>), and TGF of <inline-formula> <tex-math notation="LaTeX">$0.9236~\pm ~0.1177$ </tex-math></inline-formula> for (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {l}}$ </tex-math></inline-formula>). It also outperformed individual models in error metrics, with a MAPE of 7.66% for (R) compared to 23.06% (TRF) and 29.42% (LRNN). The visualization analysis confirmed the model’s strong predictive capability, as the error distribution is tightly clustered around zero, the estimated values align closely with the ideal line, and the real trends in efficiency and torque across various load conditions are accurately represented. Thus, the model’s capacity to accurately predict parameters and represent machine behavior has been revealed, and this method offers a feasible option for the effective use of resources, such as time and labor, in the estimation of PMSM parameters. |
| format | Article |
| id | doaj-art-adc0a29db9bd4eeb8977409f1f7cda3a |
| institution | Kabale University |
| issn | 2169-3536 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | IEEE |
| record_format | Article |
| series | IEEE Access |
| spelling | doaj-art-adc0a29db9bd4eeb8977409f1f7cda3a2025-08-20T03:24:59ZengIEEEIEEE Access2169-35362025-01-0113968579687310.1109/ACCESS.2025.357610111021566An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous MachinesSema Nur Ipek0https://orcid.org/0000-0003-0369-4231Nur Bekiroglu1Murat Taskiran2https://orcid.org/0000-0002-6436-6963Department of Electricity and Energy, Istanbul Aydin University, Istanbul, TürkiyeDepartment of Electrical Engineering, Yıldız Technical University, Istanbul, TürkiyeDepartment of Electronics and Communication Engineering, Yıldız Technical University, Istanbul, TürkiyePermanent Magnet Synchronous Machines (PMSMs) are extensively utilized for their ability to deliver accurate position control, and the equivalent circuit characteristics of these machines are essential in several applications, particularly in formulating the control strategy. The study introduces an ensemble-based methodology for estimating the equivalent circuit parameters of PMSMs consisting of phase resistance (R), magnetizing reactance (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {m}}$ </tex-math></inline-formula>), and leakage reactance (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {l}}$ </tex-math></inline-formula>) via manufacturer catalog data, which eliminates the necessity for experimental setups, high-quality real-time data, and operational disruptions. Six machine learning models-Multilayer Perceptron (MLP), Cascade Forward Neural Network (CFNN), Layer Recurrent Neural Network (LRNN), Transformer-like Network (TRF), Decision Tree (DT), and Support Vector Regression (SVR)–were evaluated in the first stage of the study. Among these, LRNN and TRF showed the best performance, with LRNN achieving the highest <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$0.9212~\pm ~0.0973$ </tex-math></inline-formula>) for the (R) parameter, followed by TRF (<inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula>: <inline-formula> <tex-math notation="LaTeX">$0.9163~\pm ~0.0561$ </tex-math></inline-formula>). An averaging voting ensemble model is developed by integrating the two highest-performing algorithms, LRNN and TRF, leveraging the strengths of both algorithms. The ensemble model combining TRF and LRNN further improved predictions, achieving an <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$0.9804~\pm ~0.0151$ </tex-math></inline-formula> and TGF of <inline-formula> <tex-math notation="LaTeX">$0.9827~\pm ~0.0173$ </tex-math></inline-formula> for R, <inline-formula> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$0.9615~\pm ~0.0306$ </tex-math></inline-formula> for (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {m}}$ </tex-math></inline-formula>), and TGF of <inline-formula> <tex-math notation="LaTeX">$0.9236~\pm ~0.1177$ </tex-math></inline-formula> for (<inline-formula> <tex-math notation="LaTeX">$X_{\mathrm {l}}$ </tex-math></inline-formula>). It also outperformed individual models in error metrics, with a MAPE of 7.66% for (R) compared to 23.06% (TRF) and 29.42% (LRNN). The visualization analysis confirmed the model’s strong predictive capability, as the error distribution is tightly clustered around zero, the estimated values align closely with the ideal line, and the real trends in efficiency and torque across various load conditions are accurately represented. Thus, the model’s capacity to accurately predict parameters and represent machine behavior has been revealed, and this method offers a feasible option for the effective use of resources, such as time and labor, in the estimation of PMSM parameters.https://ieeexplore.ieee.org/document/11021566/Averaging votingCFNNdecision treeensemble learningLRNNMLP |
| spellingShingle | Sema Nur Ipek Nur Bekiroglu Murat Taskiran An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines IEEE Access Averaging voting CFNN decision tree ensemble learning LRNN MLP |
| title | An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines |
| title_full | An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines |
| title_fullStr | An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines |
| title_full_unstemmed | An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines |
| title_short | An Ensemble Learning-Based Predictive Parameterization Approach for Permanent Magnet Synchronous Machines |
| title_sort | ensemble learning based predictive parameterization approach for permanent magnet synchronous machines |
| topic | Averaging voting CFNN decision tree ensemble learning LRNN MLP |
| url | https://ieeexplore.ieee.org/document/11021566/ |
| work_keys_str_mv | AT semanuripek anensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines AT nurbekiroglu anensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines AT murattaskiran anensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines AT semanuripek ensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines AT nurbekiroglu ensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines AT murattaskiran ensemblelearningbasedpredictiveparameterizationapproachforpermanentmagnetsynchronousmachines |