Near-infrared light-driven metabolic reprogramming of synoviocytes for the treatment of rheumatoid arthritis
Abstract Rheumatoid arthritis is a common autoimmune disease characterized by chronic synovial inflammation and joint destruction, primarily driven by an imbalanced cellular metabolism and inflammatory microenvironment. While gene therapy offers a promising therapeutic approach, its effectiveness is...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61923-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Rheumatoid arthritis is a common autoimmune disease characterized by chronic synovial inflammation and joint destruction, primarily driven by an imbalanced cellular metabolism and inflammatory microenvironment. While gene therapy offers a promising therapeutic approach, its effectiveness is limited by the challenges of non-specific gene expression in healthy tissues. Here, we develop a gene delivery system (namely APPC), in which near-infrared (NIR)-responsive gold nanorods are coated with chondroitin sulfate-modified polyethyleneimine to facilitate the heat-responsive targeted delivery of heme oxygenase 1 (HO-1) gene. The APPC shows favorable transfection efficiency due to its targeting ability and significantly facilitates HO-1 expression under NIR irradiation. The combination of APPC/pHO-1 and NIR can effectively reprogram the cellular metabolism and repolarize the macrophages and fibroblast-like synoviocytes, thereby inhibiting inflammation by suppressing glycolysis. Meanwhile, APPC can specifically enhance the HO-1 expression in inflamed tissues through NIR-mediated the activation of heat shock protein 70 promoter, ensuring the precise gene expression via photothermal conversion. In a collagen-induced arthritis model, APPC/pHO-1 under NIR irradiation exhibits potent therapeutic efficacy, restoring the articular microenvironmental homeostasis and mitigating the symptoms of rheumatoid arthritis. These findings highlight the potential of APPC/pHO-1 nanoparticles in the gene therapy of rheumatoid arthritis and other inflammatory diseases. |
|---|---|
| ISSN: | 2041-1723 |