Merging Various Types of Remote Sensing Data and Social Participation GIS with AI to Map the Objects Affected by Light Occlusion
This study proposes a practical integration of an existing deep learning model (YOLOv9-E) and social participation GIS using multi-source remote sensing data to identify asbestos-containing materials located on the side of a building affected by light occlusions. These objects are often undetectable...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/13/2131 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study proposes a practical integration of an existing deep learning model (YOLOv9-E) and social participation GIS using multi-source remote sensing data to identify asbestos-containing materials located on the side of a building affected by light occlusions. These objects are often undetectable by traditional vertical or oblique photogrammetry, yet their precise localization is essential for effective removal planning. By leveraging the mobility and responsiveness of citizen investigators, we conducted fine-grained surveys in community spaces that were often inaccessible using conventional methods. The YOLOv9-E model demonstrated robustness on mobile-captured images, enriched with geolocation and orientation metadata, which improved the association between detections and specific buildings. By comparing results from Google Street View and field-based social imagery, we highlight the complementary strengths of both sources. Rather than introducing new algorithms, this study focuses on an applied integration framework to improve detection coverage, spatial precision, and participatory monitoring for environmental risk management. The dataset comprised 20,889 images, with 98% being used for training and validation and 2% being used for independent testing. The YOLOv9-E model achieved an mAP50 of 0.81 and an F1-score of 0.85 on the test set. |
|---|---|
| ISSN: | 2072-4292 |