A Car-Following Model considering the Effect of Following Vehicles under the Framework of Physics-Informed Deep Learning
Car-following models have been studied for a long time, and many traffic engineers and researchers have devoted attention to them. With the increase in machine learning, this paper proposes a fusion model based on the physics-informed deep learning framework. The purpose of this paper is to inherit...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | Journal of Advanced Transportation |
| Online Access: | http://dx.doi.org/10.1155/2022/3398862 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Car-following models have been studied for a long time, and many traffic engineers and researchers have devoted attention to them. With the increase in machine learning, this paper proposes a fusion model based on the physics-informed deep learning framework. The purpose of this paper is to inherit the predecessors’ ideas, transform them to fit a new framework, and improve the framework’s accuracy. The IDM-D (intelligent driver model development) involves reenabling the effect of the following vehicle to form a complementary model (not car-following model) with the IDM (intelligent driver model). The pretreated NGSIM data are used for calibration and validation. The IDM and the IDM-D are combined with the LSTM under the framework of physics-informed deep learning, and the results are mixed in a ratio to form the final result. Using test data for simulation, the results reveal that the IDM-informed LSTM shows better performance than the LSTM and that the fusion model further improves the MSE (mean square error) of the IDM-informed LSTM. The fusion increases the accuracy during the deceleration process, which is better than just a single IDM-informed LSTM. The fusion model further explains drivers’ deceleration behaviors. |
|---|---|
| ISSN: | 2042-3195 |