Perbandingan Algoritma Support Vector Machine, Decision Tree, dan Logistic Regresion Pada Analisis Sentimen Ulasan Aplikasi Netflix

Penelitian ini bertujuan untuk menganalisis sentimen terhadap ulasan pengguna Netflix menggunakan algoritma machine learning seperti Support Vector Machine (SVM), Decision Tree dan Logistic Regression. Dataset yang terdiri dari 3000 ulasan pengguna diambil dari Google Play Store dan melalui proses p...

Full description

Saved in:
Bibliographic Details
Main Authors: Nevita Cahaya Ramadani, Imam Tahyudin, Azhari Shouni Barkah
Format: Article
Language:Indonesian
Published: Universitas Andalas 2024-08-01
Series:Jurnal Teknologi dan Sistem Informasi
Subjects:
Online Access:https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/2746
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Penelitian ini bertujuan untuk menganalisis sentimen terhadap ulasan pengguna Netflix menggunakan algoritma machine learning seperti Support Vector Machine (SVM), Decision Tree dan Logistic Regression. Dataset yang terdiri dari 3000 ulasan pengguna diambil dari Google Play Store dan melalui proses preprocessing teks yang mencakup penghapusan karakter, tokenisasi, penghapusan stopword, stemming, serta penyaringan token pendek. Metode TF-IDF digunakan untuk ekstraksi dan pembobotan fitur dalam analisis. Evaluasi hasil menunjukkan bahwa SVM secara konsisten memberikan akurasi yang lebih tinggi dibandingkan Decision Tree dan Logistic Regression dalam klasifikasi sentimen, dengan SVM mencapai akurasi rata-rata 88.18% dan puncak tertinggi 92.69% dalam K-Fold Cross Validation. Implikasi praktis dari penelitian ini adalah Netflix dapat memanfaatkan analisis sentimen untuk meningkatkan pengalaman pengguna dan pengelolaan layanan lebih baik.
ISSN:2460-3465
2476-8812