Comparison of NeRF- and SfM-Based Methods for Point Cloud Reconstruction for Small-Sized Archaeological Artifacts

This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetr...

Full description

Saved in:
Bibliographic Details
Main Authors: Miguel Ángel Maté-González, Roy Yali, Jesús Rodríguez-Hernández, Enrique González-González, Julián Aguirre de Mata
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/14/2535
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 cm, characterized by complex geometries and reflective surfaces that pose challenges for conventional recording methods. To address the limitations of traditional methods without resorting to the high costs associated with laser scanning, this study explores NeRF and GS as cost-effective and efficient alternatives. A comprehensive experimental framework was established, incorporating ground-truth data obtained using a metrological articulated arm and a rigorous quantitative evaluation based on root mean square (RMS) error, Chamfer distance, and point cloud density. The results indicate that while NeRF outperforms GS in terms of geometric fidelity, both techniques still exhibit lower accuracy compared to SfM, particularly in preserving fine geometric details. Nonetheless, NeRF demonstrates strong potential for rapid, high-quality 3D documentation suitable for visualization and dissemination purposes in cultural heritage. These findings highlight both the current capabilities and limitations of neural rendering techniques for archaeological documentation and suggest promising future research directions combining AI-based models with traditional photogrammetric pipelines.
ISSN:2072-4292