Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi

Saat ini, banyak aplikasi perangkat cerdas yang dikembangkan untuk melakukan tugas secara mandiri tanpa menerima perintah dari manusia. Oleh karena itu, mengembangkan sistem yang memungkinkan perangkat untuk melakukan tugas pengawasan seperti mendeteksi dan melacak objek bergerak akan memungkinkan...

Full description

Saved in:
Bibliographic Details
Main Authors: Fahmi Erza, Hurriyatul Fitriyah, Eko Setiawan
Format: Article
Language:Indonesian
Published: University of Brawijaya 2022-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/6808
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858571247353856
author Fahmi Erza
Hurriyatul Fitriyah
Eko Setiawan
author_facet Fahmi Erza
Hurriyatul Fitriyah
Eko Setiawan
author_sort Fahmi Erza
collection DOAJ
description Saat ini, banyak aplikasi perangkat cerdas yang dikembangkan untuk melakukan tugas secara mandiri tanpa menerima perintah dari manusia. Oleh karena itu, mengembangkan sistem yang memungkinkan perangkat untuk melakukan tugas pengawasan seperti mendeteksi dan melacak objek bergerak akan memungkinkan tugas yang lebih canggih untuk diterapkan pada robot di masa depan. Teknologi Quadcopter sesungguhnya dapat memudahkan pekerjaan manusia dalam melakukan pengawasan dan pelacakan seperti pada kasus pelacakan lansia atau ABK (Anak Berkebutuhan Khusus) secara otomatis agar kerabat dapat melakukan pengawasan dengan menggunakan drone. Sehingga penelitian ini dilakukan untuk membuat sebuah sistem pada drone atau quadcopter agar dapat mendeteksi objek dan mengikutinya. Pada implementasinya, orang yang berkebutuhan khusus dan membutuhkan pengawasan akan mengenakan atribut berupa topi dengan warna solid. Warna topi tersebut akan dijadikan acuan untuk threshold segmentasi warna untuk mendeteksi objek topi tersebut dengan pemrosesan citra digital. Pergerakan drone ditentukan oleh prediksi jarak, sudut, dan ketinggian objek berdasarkan regresi linier yang dihasilkan dari 123 data latih. Hasil deteksi sistem juga cukup sesuai dengan pergerakan drone ketika diuji dengan 27 data. Akurasi dari prediksi gerak pitch adalah 84%, prediksi gerak yaw adalah 94%, dan prediksi gerak up/down adalah 91,5%. Adapun waktu komputasinya adalah 0.175829662 detik per frame.   Abstract   Nowadays, many intelligent device applications are developed to perform tasks independently without receiving commands from humans. Therefore, developing systems that allow devices to perform surveillance tasks such as detecting and tracking moving objects will allow more sophisticated tasks to be applied to robots in the future. Quadcopter technology can actually facilitate human work in monitoring and tracking, such as in the case of tracking the elderly or children with special needs automatically so that relatives can carry out surveillance using drones. So this research was planned to create a system on a drone so it can detect objects and follow them. In its implementation, people with special needs and need supervision will wear an attribute in the form of a hat with a solid color. The color of the hat will be used as references for the color segmentation threshold to detect the hat object with digital image processing. The movement of the drone is determined by the prediction of the distance, angle, and height of the object based on linear regression generated from 123 training data. The system detection results are also quite in accordance with the movement of the drone when tested with 27 data. The accuracy of pitch motion prediction is 84%, yaw motion prediction is 94%, and up/down motion prediction is 91.5%. The computation time is 0.175829662 seconds per frame.
format Article
id doaj-art-aca280d3fd314df1ae3c681dcc5ba635
institution Kabale University
issn 2355-7699
2528-6579
language Indonesian
publishDate 2022-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj-art-aca280d3fd314df1ae3c681dcc5ba6352025-02-11T10:40:04ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792022-12-019710.25126/jtiik.20229768081039Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry PiFahmi Erza0Hurriyatul Fitriyah1Eko Setiawan2Universitas Brawijaya, MalangUniversitas Brawijaya, MalangUniversitas Brawijaya, Malang Saat ini, banyak aplikasi perangkat cerdas yang dikembangkan untuk melakukan tugas secara mandiri tanpa menerima perintah dari manusia. Oleh karena itu, mengembangkan sistem yang memungkinkan perangkat untuk melakukan tugas pengawasan seperti mendeteksi dan melacak objek bergerak akan memungkinkan tugas yang lebih canggih untuk diterapkan pada robot di masa depan. Teknologi Quadcopter sesungguhnya dapat memudahkan pekerjaan manusia dalam melakukan pengawasan dan pelacakan seperti pada kasus pelacakan lansia atau ABK (Anak Berkebutuhan Khusus) secara otomatis agar kerabat dapat melakukan pengawasan dengan menggunakan drone. Sehingga penelitian ini dilakukan untuk membuat sebuah sistem pada drone atau quadcopter agar dapat mendeteksi objek dan mengikutinya. Pada implementasinya, orang yang berkebutuhan khusus dan membutuhkan pengawasan akan mengenakan atribut berupa topi dengan warna solid. Warna topi tersebut akan dijadikan acuan untuk threshold segmentasi warna untuk mendeteksi objek topi tersebut dengan pemrosesan citra digital. Pergerakan drone ditentukan oleh prediksi jarak, sudut, dan ketinggian objek berdasarkan regresi linier yang dihasilkan dari 123 data latih. Hasil deteksi sistem juga cukup sesuai dengan pergerakan drone ketika diuji dengan 27 data. Akurasi dari prediksi gerak pitch adalah 84%, prediksi gerak yaw adalah 94%, dan prediksi gerak up/down adalah 91,5%. Adapun waktu komputasinya adalah 0.175829662 detik per frame.   Abstract   Nowadays, many intelligent device applications are developed to perform tasks independently without receiving commands from humans. Therefore, developing systems that allow devices to perform surveillance tasks such as detecting and tracking moving objects will allow more sophisticated tasks to be applied to robots in the future. Quadcopter technology can actually facilitate human work in monitoring and tracking, such as in the case of tracking the elderly or children with special needs automatically so that relatives can carry out surveillance using drones. So this research was planned to create a system on a drone so it can detect objects and follow them. In its implementation, people with special needs and need supervision will wear an attribute in the form of a hat with a solid color. The color of the hat will be used as references for the color segmentation threshold to detect the hat object with digital image processing. The movement of the drone is determined by the prediction of the distance, angle, and height of the object based on linear regression generated from 123 training data. The system detection results are also quite in accordance with the movement of the drone when tested with 27 data. The accuracy of pitch motion prediction is 84%, yaw motion prediction is 94%, and up/down motion prediction is 91.5%. The computation time is 0.175829662 seconds per frame. https://jtiik.ub.ac.id/index.php/jtiik/article/view/6808
spellingShingle Fahmi Erza
Hurriyatul Fitriyah
Eko Setiawan
Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
Jurnal Teknologi Informasi dan Ilmu Komputer
title Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
title_full Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
title_fullStr Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
title_full_unstemmed Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
title_short Sistem Object Tracking pada Quadcopter Menggunakan Segmentasi Citra dengan Deteksi Warna HSV dan Metode Regresi Linier Berbasis Raspberry Pi
title_sort sistem object tracking pada quadcopter menggunakan segmentasi citra dengan deteksi warna hsv dan metode regresi linier berbasis raspberry pi
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/6808
work_keys_str_mv AT fahmierza sistemobjecttrackingpadaquadcoptermenggunakansegmentasicitradengandeteksiwarnahsvdanmetoderegresilinierberbasisraspberrypi
AT hurriyatulfitriyah sistemobjecttrackingpadaquadcoptermenggunakansegmentasicitradengandeteksiwarnahsvdanmetoderegresilinierberbasisraspberrypi
AT ekosetiawan sistemobjecttrackingpadaquadcoptermenggunakansegmentasicitradengandeteksiwarnahsvdanmetoderegresilinierberbasisraspberrypi