Enhancing Cervical Cancer Classification: Through a Hybrid Deep Learning Approach Integrating DenseNet201 and InceptionV3
This paper proposes a hybrid deep learning model integrating DenseNet201 and InceptionV3 to address the challenges in achieving accurate and reliable cervical cancer classification. Current models often exhibit limitations in balancing precision and recall, which are critical for dependable clinical...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10835083/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!