Enhancing Fault Detection in Stochastic Environments Using Interval-Valued KPCA: A Cement Rotary Kiln Case Study
Fault detection in industrial processes is challenging due to significant data uncertainty, which complicates the accurate modeling of interval-valued data and the quantification of errors necessary for reliable detection. Existing approaches, such as kernel principal component analysis (KPCA), stru...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11030568/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fault detection in industrial processes is challenging due to significant data uncertainty, which complicates the accurate modeling of interval-valued data and the quantification of errors necessary for reliable detection. Existing approaches, such as kernel principal component analysis (KPCA), struggle with these challenges because they rely on single-valued data representations and are unable to effectively handle interval-based variability. To address these limitations, this paper introduces the interval-valued model KPCA (IV-KPCA), which extends KPCA by redefining similarity measures and kernel functions to accommodate interval-valued uncertainty. IV-KPCA preserves the interval structure throughout the modeling process, enhancing robustness to dynamic uncertainties and improving fault detection in complex nonlinear systems. Within this framework, fault detection statistics (<inline-formula> <tex-math notation="LaTeX">$T^{2}$ </tex-math></inline-formula>, Q, and <inline-formula> <tex-math notation="LaTeX">$\Phi $ </tex-math></inline-formula>) are developed to enable precise error quantification. The proposed method is validated on a cement rotary kiln process, a highly stochastic industrial system characterized by significant uncertainties. Experimental results demonstrate that IV-KPCA reduces false alarms, missed detections, and detection delays by over 100%, 90%, and 95%, respectively, compared to traditional methods. These findings underscore the potential of IV-KPCA in enhancing fault detection performance in complex, uncertain environments. |
|---|---|
| ISSN: | 2169-3536 |