A Geometric Variational Problem for Pseudo-Galilean Particles
This study explores the dynamics of particle motion in pseudo-Galilean <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>−</mo></mrow></semantics></math&g...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/7/520 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study explores the dynamics of particle motion in pseudo-Galilean <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>−</mo></mrow></semantics></math></inline-formula>space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>G</mi><mrow><mn>3</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> by considering actions that incorporate both curvature and torsion of trajectories. We consider a general energy functional and formulate Euler–Lagrange equations corresponding to this functional under some boundary conditions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>G</mi><mrow><mn>3</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula>. By adapting the geometric tools of the Frenet frame to this setting, we analyze the resulting variational equations and provide illustrative solutions that highlight their structural properties. In particular, we examine examples derived from natural Hamiltonian trajectories in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>G</mi><mrow><mn>3</mn></mrow><mn>1</mn></msubsup></semantics></math></inline-formula> and extend them to reflect the distinctive geometric features of pseudo-Galilean spaces, offering insight into their foundational behavior and theoretical implications. |
|---|---|
| ISSN: | 2075-1680 |