Laser Writing of GaN/Ga2O3 Heterojunction Photodetector Arrays

Abstract Photodetectors play a crucial role in converting light signals into electrical signals and have significant applications in various fields such as communications, imaging, and sensing. However, the fabrication of a photodetector is a complex process that involves precise control of surface...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengxiang Sun, Xun Yang, Kexue Li, Zhipeng Wei, Wei Fan, Shaoyi Wang, Weimin Zhou, Chongxin Shan
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202300371
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Photodetectors play a crucial role in converting light signals into electrical signals and have significant applications in various fields such as communications, imaging, and sensing. However, the fabrication of a photodetector is a complex process that involves precise control of surface preparation, lithography, and deposition techniques. Here the study demonstrates that GaN/Ga2O3 heterojunctions can be fabricated utilizing laser processing to transform the surface of GaN into Ga2O3. The GaN/Ga2O3 heterojunctions exhibit good reproducibility, uniformity, and ability to operate under zero bias, with a responsivity of 110.22 mA W−1, a detection rate of 5.56 × 1011 jones, and an external quantum efficiency of 42.34%. Moreover, an 8 × 8 photodetector array based on GaN/Ga2O3 heterojunction is fabricated via laser writing and is demonstrated to have ultraviolet imaging capabilities. This report presents the pioneering fabrication of a photodetector array using laser writing. The findings offer a versatile and scalable approach for the production of large‐area heterojunction photodetector arrays.
ISSN:2196-7350