Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco

The development of efficient classifiers for land cover remains challenging due to the presence of hyperparameters in the model. Conventional approaches rely on manual tuning, which is both time-consuming and impractical, often leading to suboptimal results. This study aimed to optimize the hyperpar...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdelhak El Kharki, Jamila Mechbouh, Miriam Wahbi, Otmane Yazidi Alaoui, Hakim Boulaassal, Mustapha Maatouk, Omar El Kharki
Format: Article
Language:English
Published: Universitat Politècnica de València 2024-11-01
Series:Revista de Teledetección
Subjects:
Online Access:https://polipapers.upv.es/index.php/raet/article/view/22060
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549739313233920
author Abdelhak El Kharki
Jamila Mechbouh
Miriam Wahbi
Otmane Yazidi Alaoui
Hakim Boulaassal
Mustapha Maatouk
Omar El Kharki
author_facet Abdelhak El Kharki
Jamila Mechbouh
Miriam Wahbi
Otmane Yazidi Alaoui
Hakim Boulaassal
Mustapha Maatouk
Omar El Kharki
author_sort Abdelhak El Kharki
collection DOAJ
description The development of efficient classifiers for land cover remains challenging due to the presence of hyperparameters in the model. Conventional approaches rely on manual tuning, which is both time-consuming and impractical, often leading to suboptimal results. This study aimed to optimize the hyperparameters of the Support Vector Machine (SVM) algorithm using the grid search method to map the distribution of the Argan forest in the Souss-Massa region of Morocco from Sentinel-2 satellite image. To achieve this, we examined the C parameter for the linear function, as well as the C and gamma parameters for the radial RBF and sigmoid functions. Similarly, we explored the C, gamma, and degree parameters for the polynomial function chosen using the grid search method. These parameters are compared with the default hyperparameters of each SVM function. The results are validated using the cross-validation method and by the following scores: accuracy, precision, recall, F1 score, and Cohen’s Kappa. The experiments were conducted using the Earth Engine Python API in Google Colab (Google Collaboratory). In addition, experimental results indicate that the hyperparameters selected by grid search yield higher scores than the default hyperparameters. The best results were achieved using the hyperparameters of the polynomial base kernel, specifically with C = 10, degree = 2, and gamma = 10. Accuracy = 96.61%.
format Article
id doaj-art-ac29343177944a67982baee6b9f2a562
institution Kabale University
issn 1133-0953
1988-8740
language English
publishDate 2024-11-01
publisher Universitat Politècnica de València
record_format Article
series Revista de Teledetección
spelling doaj-art-ac29343177944a67982baee6b9f2a5622025-02-03T06:10:08ZengUniversitat Politècnica de ValènciaRevista de Teledetección1133-09531988-87402024-11-016510.4995/raet.2025.2206021250Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, MoroccoAbdelhak El Kharki0Jamila Mechbouh1Miriam Wahbi2Otmane Yazidi Alaoui3https://orcid.org/0000-0002-7100-2391Hakim Boulaassal4https://orcid.org/0000-0003-2342-4431Mustapha Maatouk5Omar El Kharki6Abdelmalek Essaâdi UniversityRif GéomatiqueAbdelmalek Essaâdi University Abdelmalek Essaâdi University Abdelmalek Essaâdi University Abdelmalek Essaâdi University Abdelmalek Essaâdi University The development of efficient classifiers for land cover remains challenging due to the presence of hyperparameters in the model. Conventional approaches rely on manual tuning, which is both time-consuming and impractical, often leading to suboptimal results. This study aimed to optimize the hyperparameters of the Support Vector Machine (SVM) algorithm using the grid search method to map the distribution of the Argan forest in the Souss-Massa region of Morocco from Sentinel-2 satellite image. To achieve this, we examined the C parameter for the linear function, as well as the C and gamma parameters for the radial RBF and sigmoid functions. Similarly, we explored the C, gamma, and degree parameters for the polynomial function chosen using the grid search method. These parameters are compared with the default hyperparameters of each SVM function. The results are validated using the cross-validation method and by the following scores: accuracy, precision, recall, F1 score, and Cohen’s Kappa. The experiments were conducted using the Earth Engine Python API in Google Colab (Google Collaboratory). In addition, experimental results indicate that the hyperparameters selected by grid search yield higher scores than the default hyperparameters. The best results were achieved using the hyperparameters of the polynomial base kernel, specifically with C = 10, degree = 2, and gamma = 10. Accuracy = 96.61%.https://polipapers.upv.es/index.php/raet/article/view/22060sentinel-2support vector machinehyperparameterargan forestsgrid search
spellingShingle Abdelhak El Kharki
Jamila Mechbouh
Miriam Wahbi
Otmane Yazidi Alaoui
Hakim Boulaassal
Mustapha Maatouk
Omar El Kharki
Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
Revista de Teledetección
sentinel-2
support vector machine
hyperparameter
argan forests
grid search
title Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
title_full Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
title_fullStr Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
title_full_unstemmed Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
title_short Optimizing SVM for argan tree classification using Sentinel-2 data: A case study in the Sous-Massa Region, Morocco
title_sort optimizing svm for argan tree classification using sentinel 2 data a case study in the sous massa region morocco
topic sentinel-2
support vector machine
hyperparameter
argan forests
grid search
url https://polipapers.upv.es/index.php/raet/article/view/22060
work_keys_str_mv AT abdelhakelkharki optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT jamilamechbouh optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT miriamwahbi optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT otmaneyazidialaoui optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT hakimboulaassal optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT mustaphamaatouk optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco
AT omarelkharki optimizingsvmforargantreeclassificationusingsentinel2dataacasestudyinthesousmassaregionmorocco