A Near-Infrared Fluorescent Probe for Specific Imaging of Lymph Node Metastases in Ovarian Cancer via Active Targeting of the Gonadotropin-Releasing Hormone Receptor

Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonad...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiyu Liu, Jiaan Sun, Xiaobo Zhou, Mingxing Zhang, Tao Pu, Xiaolan Gao, Meng Zhang, Congjian Xu, Xiaoyan Zhang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/6/868
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing hormone receptor (GnRHR)-targeted near-infrared (NIR) fluorescent probe, GnRHa-PEG-Rh760, through conjugation of a GnRH analog peptide with the Rh760 fluorophore and polyethylene glycol (PEG). A non-targeted probe (PEG-Rh760) served as control. In mouse models of subcutaneous xenografts, peritoneal and lymph node metastases derived from ovarian cancer cells, GnRHa-PEG-Rh760 showed superior tumor-specific accumulation. NIR fluorescence imaging revealed strong fluorescence signals localized to primary tumors, peritoneal lesions, and metastatic lymph nodes with no off-target signals in normal lymph nodes. The spatial co-localization between the NIR fluorescence of GnRHa-PEG-Rh760 and tumor-derived bioluminescence clearly confirmed the probe’s target specificity. GnRHa-PEG-Rh760 mainly accumulated in the tumor and liver and was gradually cleared at 96 h post-injection. The retention of fluorescence signals in normal ovary tissue further validated GnRHR-mediated binding of the probe. Notably, GnRHa-PEG-Rh760 exhibited excellent biocompatibility with no observed systemic toxicity as evidenced by hematologic and histopathologic analyses. These data demonstrate the potential of GnRHa-PEG-Rh760 as an intraoperative imaging agent, providing real-time fluorescence imaging guidance to optimize surgical precision. This study highlights the value of receptor-targeted molecular imaging probes in precision cancer surgery.
ISSN:2218-273X