Hippocampal and cortical high-frequency oscillations orchestrate human semantic networks during word list memory

Summary: Episodic memory requires the precise coordination between the hippocampus and distributed cortical regions. This may be facilitated by bursts of brain activity called high-frequency oscillations (HFOs). We hypothesized that HFOs activate specific networks during memory retrieval and aimed t...

Full description

Saved in:
Bibliographic Details
Main Authors: Akash Mishra, Serdar Akkol, Elizabeth Espinal, Noah Markowitz, Gelana Tostaeva, Elisabeth Freund, Ashesh D. Mehta, Stephan Bickel
Format: Article
Language:English
Published: Elsevier 2025-04-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004225004328
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Episodic memory requires the precise coordination between the hippocampus and distributed cortical regions. This may be facilitated by bursts of brain activity called high-frequency oscillations (HFOs). We hypothesized that HFOs activate specific networks during memory retrieval and aimed to describe the electrophysiological properties of HFO-associated activity. To study this, we recorded intracranial electroencephalography while human participants performed a list learning task. Hippocampal HFOs (hHFOs) increased during encoding and retrieval, and these increases correlated with memory performance. During retrieval, hHFOs demonstrated activation of semantic processing regions that were previously active during encoding. This consisted of broadband high-frequency activity (HFA) and cortical HFOs. HFOs in the anterior temporal lobe, a major semantic hub, co-occurred with hHFOs, particularly during retrieval. These coincident HFOs were associated with greater cortical HFA and cortical theta bursts. Hence, HFOs may support synchronization of activity across distributed nodes of the hippocampal-cortical memory network.
ISSN:2589-0042