Non-Abelian Gravitoelectromagnetism and Applications at Finite Temperature
Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation of the gravitation field. Here, a non-abelian extension of the GE...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2020-01-01
|
| Series: | Advances in High Energy Physics |
| Online Access: | http://dx.doi.org/10.1155/2020/5193692 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation of the gravitation field. Here, a non-abelian extension of the GEM theory is considered. Using the Thermo Field Dynamics (TFD) formalism to introduce temperature effects, some interesting physical phenomena are investigated. The non-abelian GEM Stefan-Boltzmann law and the Casimir effect at zero and finite temperatures for this non-abelian field are calculated. |
|---|---|
| ISSN: | 1687-7357 1687-7365 |