On Tensor Squares of Reducible Representations of Almost Simple Groups. II

Almost simple {SM}_m -groups are considered. A group G is called {SM}_m -group if the tensor square of any irreducible representation is decomposed into the sum of all characters with multiplicities not greater than m. It turned out that if G is an almost simple {SM}_2 -group, then G congruence {PG...

Full description

Saved in:
Bibliographic Details
Main Author: S. V. Polyakov
Format: Article
Language:English
Published: Yaroslavl State University 2011-06-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/1085
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849338709472706560
author S. V. Polyakov
author_facet S. V. Polyakov
author_sort S. V. Polyakov
collection DOAJ
description Almost simple {SM}_m -groups are considered. A group G is called {SM}_m -group if the tensor square of any irreducible representation is decomposed into the sum of all characters with multiplicities not greater than m. It turned out that if G is an almost simple {SM}_2 -group, then G congruence {PGL}_2(q).
format Article
id doaj-art-ab3c5901a48f410aa0e38bfce9f42e2b
institution Kabale University
issn 1818-1015
2313-5417
language English
publishDate 2011-06-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj-art-ab3c5901a48f410aa0e38bfce9f42e2b2025-08-20T03:44:19ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172011-06-01182517826On Tensor Squares of Reducible Representations of Almost Simple Groups. IIS. V. Polyakov0Ярославский государственный университет им. П.Г. ДемидоваAlmost simple {SM}_m -groups are considered. A group G is called {SM}_m -group if the tensor square of any irreducible representation is decomposed into the sum of all characters with multiplicities not greater than m. It turned out that if G is an almost simple {SM}_2 -group, then G congruence {PGL}_2(q).https://www.mais-journal.ru/jour/article/view/1085sr-groups{sm}_<i>m </i>-groupsalmost simple groupsautomorphismsgap
spellingShingle S. V. Polyakov
On Tensor Squares of Reducible Representations of Almost Simple Groups. II
Моделирование и анализ информационных систем
sr-groups
{sm}_<i>m </i>-groups
almost simple groups
automorphisms
gap
title On Tensor Squares of Reducible Representations of Almost Simple Groups. II
title_full On Tensor Squares of Reducible Representations of Almost Simple Groups. II
title_fullStr On Tensor Squares of Reducible Representations of Almost Simple Groups. II
title_full_unstemmed On Tensor Squares of Reducible Representations of Almost Simple Groups. II
title_short On Tensor Squares of Reducible Representations of Almost Simple Groups. II
title_sort on tensor squares of reducible representations of almost simple groups ii
topic sr-groups
{sm}_<i>m </i>-groups
almost simple groups
automorphisms
gap
url https://www.mais-journal.ru/jour/article/view/1085
work_keys_str_mv AT svpolyakov ontensorsquaresofreduciblerepresentationsofalmostsimplegroupsii