Comparative Analysis of Wear Resistance in 4D-Printed vs. 3D-Printed Dental Prosthetics

Background: Advancements in additive manufacturing, particularly 3D printing, have revolutionized the field of dental prosthetics. Recently, 4D printing, which incorporates time-responsive materials, has emerged as a potential game-changer. This study aims to compare the wear resistance of 3D-printe...

Full description

Saved in:
Bibliographic Details
Main Authors: Sahba Hassan, Nikhil Prakash, Surabhi Duggal, Yogesh Garg, Shailesh Jain, Syed M. Ahamed
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2025-06-01
Series:Journal of Pharmacy and Bioallied Sciences
Subjects:
Online Access:https://journals.lww.com/10.4103/jpbs.jpbs_1814_24
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Advancements in additive manufacturing, particularly 3D printing, have revolutionized the field of dental prosthetics. Recently, 4D printing, which incorporates time-responsive materials, has emerged as a potential game-changer. This study aims to compare the wear resistance of 3D-printed and 4D-printed dental prosthetics to evaluate the clinical applicability of these innovative technologies. Materials and Methods: Dental prosthetics were fabricated using both 3D printing (polyetheretherketone, PEEK) and 4D printing (shape-memory polymer composites). A total of 40 prosthetics (20 per group) were subjected to wear simulation using a chewing simulator with a load of 50 N at 1 Hz for 100,000 cycles. Surface roughness (Ra) and volumetric loss (mm≥) were measured pre- and post-simulation using 3D laser scanning and confocal microscopy. Statistical analysis was performed using an independent t-test to compare the mean wear resistance between the two groups. Results: The 4D-printed prosthetics exhibited significantly lower volumetric loss (mean: 0.34 ± 0.08 mm≥) compared to the 3D-printed prosthetics (mean: 0.76 ± 0.12 mm≥, P < 0.01). Surface roughness analysis revealed a smaller increase in Ra for 4D-printed prosthetics (from 0.22 ± 0.03 μm to 0.28 ± 0.05 μm) compared to 3D-printed prosthetics (from 0.24 ± 0.04 μm to 0.41 ± 0.06 μm, P < 0.01). Conclusion: The study demonstrates that 4D-printed dental prosthetics possess superior wear resistance compared to 3D-printed prosthetics, highlighting their potential for enhanced longevity and clinical performance in restorative dentistry. Future studies should focus on long-term in vivo evaluations and material optimization to further validate these findings.
ISSN:0976-4879
0975-7406