Quantum Gravity Effects in Statistical Mechanics with Modified Dispersion Relation
Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the ef...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Advances in High Energy Physics |
| Online Access: | http://dx.doi.org/10.1155/2018/8968732 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the effects of a deformed dispersion relation along with an upper bound in the partition function that maximum energy and/or momentum scale can have on the thermodynamics of photon gas. We also analyzed two distinct quantum gravity models in this paper. |
|---|---|
| ISSN: | 1687-7357 1687-7365 |