The risk of a mosquito-borne infection in a heterogeneous environment.
A common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components of the risk of human infection--the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious--are positively correlated. In fact, these two r...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2004-11-01
|
| Series: | PLoS Biology |
| Online Access: | https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0020368&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850240333000998912 |
|---|---|
| author | David L Smith Jonathan Dushoff F Ellis McKenzie |
| author_facet | David L Smith Jonathan Dushoff F Ellis McKenzie |
| author_sort | David L Smith |
| collection | DOAJ |
| description | A common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components of the risk of human infection--the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious--are positively correlated. In fact, these two risk factors are generated by different processes and may be negatively correlated across space and time in heterogeneous environments. Uneven distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demograPhic sources and sinks. Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature, and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the average risk of infection that are based on the average entomological inoculation rate are strongly biased in heterogeneous environments. |
| format | Article |
| id | doaj-art-aaae25e936424a00a801ff4488afceae |
| institution | OA Journals |
| issn | 1544-9173 1545-7885 |
| language | English |
| publishDate | 2004-11-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS Biology |
| spelling | doaj-art-aaae25e936424a00a801ff4488afceae2025-08-20T02:00:54ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852004-11-01211e36810.1371/journal.pbio.0020368The risk of a mosquito-borne infection in a heterogeneous environment.David L SmithJonathan DushoffF Ellis McKenzieA common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components of the risk of human infection--the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious--are positively correlated. In fact, these two risk factors are generated by different processes and may be negatively correlated across space and time in heterogeneous environments. Uneven distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demograPhic sources and sinks. Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature, and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the average risk of infection that are based on the average entomological inoculation rate are strongly biased in heterogeneous environments.https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0020368&type=printable |
| spellingShingle | David L Smith Jonathan Dushoff F Ellis McKenzie The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biology |
| title | The risk of a mosquito-borne infection in a heterogeneous environment. |
| title_full | The risk of a mosquito-borne infection in a heterogeneous environment. |
| title_fullStr | The risk of a mosquito-borne infection in a heterogeneous environment. |
| title_full_unstemmed | The risk of a mosquito-borne infection in a heterogeneous environment. |
| title_short | The risk of a mosquito-borne infection in a heterogeneous environment. |
| title_sort | risk of a mosquito borne infection in a heterogeneous environment |
| url | https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0020368&type=printable |
| work_keys_str_mv | AT davidlsmith theriskofamosquitoborneinfectioninaheterogeneousenvironment AT jonathandushoff theriskofamosquitoborneinfectioninaheterogeneousenvironment AT fellismckenzie theriskofamosquitoborneinfectioninaheterogeneousenvironment AT davidlsmith riskofamosquitoborneinfectioninaheterogeneousenvironment AT jonathandushoff riskofamosquitoborneinfectioninaheterogeneousenvironment AT fellismckenzie riskofamosquitoborneinfectioninaheterogeneousenvironment |