Tailoring Al-Doped ZnO Nanoparticles via Scalable High-Energy Ball Milling–Solid-State Reaction: Structural, Optical, and Dielectric Insights for Light-Activated Antimicrobial Defense Against Medical Device Pathogens
This study reports the synthesis of aluminum-doped ZnO nanoparticles (Al-ZnO NPs) via a top-down mechanochemical solid-state reaction (SSR) approach using high-energy ball milling (HEBM) as a rapid, controllable, and efficient method. Al-ZnO samples were characterized using X-ray diffraction (XRD),...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Crystals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4352/15/5/397 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study reports the synthesis of aluminum-doped ZnO nanoparticles (Al-ZnO NPs) via a top-down mechanochemical solid-state reaction (SSR) approach using high-energy ball milling (HEBM) as a rapid, controllable, and efficient method. Al-ZnO samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV-Vis diffuse reflectance spectroscopy. Significantly, the band gap decreased by 0.215 eV when transitioning from pure ZnO to 9 wt.% Al-doped ZnO (Al-ZnO9). TEM analysis showed that after 4 h of milling at 1000 rpm, the particle size was reduced to 59 nm, exhibiting a spherical morphology crucial for enhanced bioactivity. The antimicrobial properties of the Al-ZnO NPs were evaluated using the well diffusion method against various pathogenic microorganisms, with a particular focus on <i>Staph. aureus</i> ATCC 29213 and <i>Staph. epidermidis</i> ATCC 12228, given their clinical significance as common pathogens in infections related to medical implants and prosthetics. Al-ZnO9 demonstrated superior antibacterial performance, producing inhibition zones of 13 mm and 15 mm against <i>Staph. aureus</i> and <i>Staph. epidermidis</i>, respectively. Moreover, exposure to visible light further amplified the antimicrobial activity. This research underscores the potential for the scalable production of Al-ZnO NPs, presenting a promising solution for addressing infections linked to implanted medical devices. |
|---|---|
| ISSN: | 2073-4352 |