Existence theorems for a second order m-point boundary value problem at resonance

Let f:[0,1]×R2→R be function satisfying Caratheodory's conditions and e(t)∈L1[0,1]. Let η∈(0,1), ξi∈(0,1), ai≥0, i=1,2,…,m−2, with ∑i=1m−2ai=1, 0<ξ1<ξ2<…<ξm−2<1 be given. This paper is concerned with the problem of existence of a solution for the following boundary value problems...

Full description

Saved in:
Bibliographic Details
Main Author: Chaitan P. Gupta
Format: Article
Language:English
Published: Wiley 1995-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171295000901
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565666098446336
author Chaitan P. Gupta
author_facet Chaitan P. Gupta
author_sort Chaitan P. Gupta
collection DOAJ
description Let f:[0,1]×R2→R be function satisfying Caratheodory's conditions and e(t)∈L1[0,1]. Let η∈(0,1), ξi∈(0,1), ai≥0, i=1,2,…,m−2, with ∑i=1m−2ai=1, 0<ξ1<ξ2<…<ξm−2<1 be given. This paper is concerned with the problem of existence of a solution for the following boundary value problems x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).
format Article
id doaj-art-aaa1a71419294989925e75980728287a
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1995-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-aaa1a71419294989925e75980728287a2025-02-03T01:07:03ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251995-01-0118470571010.1155/S0161171295000901Existence theorems for a second order m-point boundary value problem at resonanceChaitan P. Gupta0Department of Mathematics, University of Nevada, Reno, NV 89557, USALet f:[0,1]×R2→R be function satisfying Caratheodory's conditions and e(t)∈L1[0,1]. Let η∈(0,1), ξi∈(0,1), ai≥0, i=1,2,…,m−2, with ∑i=1m−2ai=1, 0<ξ1<ξ2<…<ξm−2<1 be given. This paper is concerned with the problem of existence of a solution for the following boundary value problems x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).http://dx.doi.org/10.1155/S0161171295000901
spellingShingle Chaitan P. Gupta
Existence theorems for a second order m-point boundary value problem at resonance
International Journal of Mathematics and Mathematical Sciences
title Existence theorems for a second order m-point boundary value problem at resonance
title_full Existence theorems for a second order m-point boundary value problem at resonance
title_fullStr Existence theorems for a second order m-point boundary value problem at resonance
title_full_unstemmed Existence theorems for a second order m-point boundary value problem at resonance
title_short Existence theorems for a second order m-point boundary value problem at resonance
title_sort existence theorems for a second order m point boundary value problem at resonance
url http://dx.doi.org/10.1155/S0161171295000901
work_keys_str_mv AT chaitanpgupta existencetheoremsforasecondordermpointboundaryvalueproblematresonance