Combined Mineral and Organic Fertilizer Application Enhances Soil Organic Carbon and Maize Yield in Semi-Arid Kenya: A DNDC Model-Based Prediction

The application of mineral fertilizers can effectively enhance crop yields. However, this potential benefit may be diminished if the use of mineral fertilizers leads to a substantial decline in soil organic carbon (SOC) and an increase in soil greenhouse gas (GHG) emissions. This study aimed to dete...

Full description

Saved in:
Bibliographic Details
Main Authors: Stephen Okoth Aluoch, Md Raseduzzaman, Xiaoxin Li, Zhuoting Li, Fiston Bizimana, Zheng Yawen, Peter Semba Mosongo, David M. Mburu, Geofrey Waweru, Wenxu Dong, Chunsheng Hu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/2/346
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of mineral fertilizers can effectively enhance crop yields. However, this potential benefit may be diminished if the use of mineral fertilizers leads to a substantial decline in soil organic carbon (SOC) and an increase in soil greenhouse gas (GHG) emissions. This study aimed to determine the optimal fertilizer combinations and rates for improving SOC and maize yield while reducing GHG emissions in the semi-arid uplands of Kenya. Data were collected from five different fertilizer treatments (N50, N100, N150, N100+manure, and N100+straw) compared to a control (N0) in a long-term experimental field, which was used to run and validate the DNDC model before using it for long-term predictions. The results showed that the combination of mineral fertilizer and straw resulted in the highest SOC balance, followed by that of fertilizer and manure. All fertilized treatments had higher maize grain yields compared to low-fertilizer treatment (N50) and control (N0). Daily CO<sub>2</sub> fluxes were highest in the treatment combining mineral fertilizer and manure, whereas there were no significant differences in N<sub>2</sub>O fluxes among the three tested treatments. The findings of this study indicate that the judicious application of mineral fertilizer, animal manure, and straw has great potential in enhancing SOC and maize yields while reducing GHG emissions, thereby providing practical farming management strategies in semi-arid Kenya.
ISSN:2073-4395