Dirichlet problems with skew-symmetric drift terms

We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form $A\,E(x)\nabla u + \mathrm{div}(u\,E(x))$, with $A > 0$ and $E$ in $(L^{r}(\Omega ))^{N}$. The result is obtained using a nonlinear function of $u$ as test function, in orde...

Full description

Saved in:
Bibliographic Details
Main Authors: Boccardo, Lucio, Casado-Diaz, Juan, Orsina, Luigi
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.564/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206257591517184
author Boccardo, Lucio
Casado-Diaz, Juan
Orsina, Luigi
author_facet Boccardo, Lucio
Casado-Diaz, Juan
Orsina, Luigi
author_sort Boccardo, Lucio
collection DOAJ
description We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form $A\,E(x)\nabla u + \mathrm{div}(u\,E(x))$, with $A > 0$ and $E$ in $(L^{r}(\Omega ))^{N}$. The result is obtained using a nonlinear function of $u$ as test function, in order to “cancel” this term.
format Article
id doaj-art-aa3dda07f452421f935d7f43d20d5b24
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-aa3dda07f452421f935d7f43d20d5b242025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G330130610.5802/crmath.56410.5802/crmath.564Dirichlet problems with skew-symmetric drift termsBoccardo, Lucio0Casado-Diaz, Juan1Orsina, Luigi2Istituto Lombardo & Sapienza Università di Roma, ItalyDepartamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, SpainDipartimento di Matematica, Sapienza Università di Roma, ItalyWe prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form $A\,E(x)\nabla u + \mathrm{div}(u\,E(x))$, with $A > 0$ and $E$ in $(L^{r}(\Omega ))^{N}$. The result is obtained using a nonlinear function of $u$ as test function, in order to “cancel” this term.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.564/Singular driftDirichlet problemsnonlinear test functions
spellingShingle Boccardo, Lucio
Casado-Diaz, Juan
Orsina, Luigi
Dirichlet problems with skew-symmetric drift terms
Comptes Rendus. Mathématique
Singular drift
Dirichlet problems
nonlinear test functions
title Dirichlet problems with skew-symmetric drift terms
title_full Dirichlet problems with skew-symmetric drift terms
title_fullStr Dirichlet problems with skew-symmetric drift terms
title_full_unstemmed Dirichlet problems with skew-symmetric drift terms
title_short Dirichlet problems with skew-symmetric drift terms
title_sort dirichlet problems with skew symmetric drift terms
topic Singular drift
Dirichlet problems
nonlinear test functions
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.564/
work_keys_str_mv AT boccardolucio dirichletproblemswithskewsymmetricdriftterms
AT casadodiazjuan dirichletproblemswithskewsymmetricdriftterms
AT orsinaluigi dirichletproblemswithskewsymmetricdriftterms