Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode

Copper antimony sulfide (CAS) is a relatively new class of sustainable absorber material, utilizing cost effective and abundant elements. Band gap engineered, modified CAS thin films were synthesized using electrodeposition and elevated temperature sulfurization approach. A testing analog of copper...

Full description

Saved in:
Bibliographic Details
Main Authors: Prashant K. Sarswat, Michael L. Free
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2013/154694
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Copper antimony sulfide (CAS) is a relatively new class of sustainable absorber material, utilizing cost effective and abundant elements. Band gap engineered, modified CAS thin films were synthesized using electrodeposition and elevated temperature sulfurization approach. A testing analog of copper zinc antimony sulfide (CZAS) film-electrolyte interface was created in order to evaluate photoelectrochemical performance of the thin film of absorber materials. Eu3+/Eu2+ redox couple was selected for this purpose, based on its relative band offset with copper antimony sulfide. It was observed that zinc has a significant effect on CAS film properties. An enhanced photocurrent was observed for CAS film, modified with zinc addition. A detailed investigation has been carried out by changing stoichiometry, and corresponding surface and optical characterization results have been evaluated. A summary of favorable processing parameters of the films showing enhanced photoelectrochemical response is presented.
ISSN:1110-662X
1687-529X