Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition

We investigate the spectrum of the differential operator Lλ defined by the Klein-Gordon s-wave equation y″+(λ−q(x))2y=0, x∈ℝ+=[0,∞), subject to the spectral parameter-dependent boundary condition y′(0)−(aλ+b)y(0)=0 in the space L2(ℝ+), where a≠±i, b are complex constants, q is a complex-valued funct...

Full description

Saved in:
Bibliographic Details
Main Author: Gülen Başcanbaz-Tunca
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204203088
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832565734984646656
author Gülen Başcanbaz-Tunca
author_facet Gülen Başcanbaz-Tunca
author_sort Gülen Başcanbaz-Tunca
collection DOAJ
description We investigate the spectrum of the differential operator Lλ defined by the Klein-Gordon s-wave equation y″+(λ−q(x))2y=0, x∈ℝ+=[0,∞), subject to the spectral parameter-dependent boundary condition y′(0)−(aλ+b)y(0)=0 in the space L2(ℝ+), where a≠±i, b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove that Lλ has a finite number of eigenvalues and spectral singularities with finite multiplicities if the conditions limx→∞q(x)=0, supx∈R+{exp(ϵx)|q′(x)|}<∞, ϵ>0, hold. Finally we show the properties of the principal functions corresponding to the spectral singularities.
format Article
id doaj-art-aa313a7c8c51447fa3e24aedb0bcb856
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-aa313a7c8c51447fa3e24aedb0bcb8562025-02-03T01:06:56ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252004-01-012004271437144510.1155/S0161171204203088Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary conditionGülen Başcanbaz-Tunca0Department of Mathematics, Faculty of Science, Ankara University, Tandogan, Ankara 06100, TurkeyWe investigate the spectrum of the differential operator Lλ defined by the Klein-Gordon s-wave equation y″+(λ−q(x))2y=0, x∈ℝ+=[0,∞), subject to the spectral parameter-dependent boundary condition y′(0)−(aλ+b)y(0)=0 in the space L2(ℝ+), where a≠±i, b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove that Lλ has a finite number of eigenvalues and spectral singularities with finite multiplicities if the conditions limx→∞q(x)=0, supx∈R+{exp(ϵx)|q′(x)|}<∞, ϵ>0, hold. Finally we show the properties of the principal functions corresponding to the spectral singularities.http://dx.doi.org/10.1155/S0161171204203088
spellingShingle Gülen Başcanbaz-Tunca
Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
International Journal of Mathematics and Mathematical Sciences
title Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
title_full Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
title_fullStr Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
title_full_unstemmed Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
title_short Spectral properties of the Klein-Gordon s-wave equation with spectral parameter-dependent boundary condition
title_sort spectral properties of the klein gordon s wave equation with spectral parameter dependent boundary condition
url http://dx.doi.org/10.1155/S0161171204203088
work_keys_str_mv AT gulenbascanbaztunca spectralpropertiesofthekleingordonswaveequationwithspectralparameterdependentboundarycondition