Privacy-preserving security of IoT networks: A comparative analysis of methods and applications

The Internet of Things (IoT) connects devices to enhance efficiency, productivity, and quality of life. However, deploying IoT networks introduces critical privacy and security challenges, including resource constraints, scalability issues, interoperability gaps, and risks to data privacy. Addressin...

Full description

Saved in:
Bibliographic Details
Main Authors: Abubakar Wakili, Sara Bakkali
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2025-12-01
Series:Cyber Security and Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772918425000013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Internet of Things (IoT) connects devices to enhance efficiency, productivity, and quality of life. However, deploying IoT networks introduces critical privacy and security challenges, including resource constraints, scalability issues, interoperability gaps, and risks to data privacy. Addressing these challenges is vital to ensure the reliability and trustworthiness of IoT applications. This study provides a comprehensive analysis of privacy-preserving security methods, evaluating cryptography, blockchain, machine learning, and fog/edge computing against performance indicators such as scalability, efficiency, robustness, and usability. Through a structured literature review and thorough data analysis, the study reveals that while cryptography offers high security, it faces scalability challenges; blockchain excels in decentralization but struggles with efficiency; machine learning provides adaptive intelligence but raises privacy concerns; and fog/edge computing delivers low-latency processing yet encounters operational complexities. The findings highlight the importance of adopting a hybrid approach that combines the strengths of various methods to overcome their limitations. This study serves as a valuable resource for academia, industry professionals, and policymakers, providing guidance to strengthen IoT infrastructures and influence the direction of future research.
ISSN:2772-9184