Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative

For $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local no...

Full description

Saved in:
Bibliographic Details
Main Author: V.A. Kofanov
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2024-12-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841558937124470784
author V.A. Kofanov
author_facet V.A. Kofanov
author_sort V.A. Kofanov
collection DOAJ
description For $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local norm of the function $|||x^{\uparrow \downarrow}|||_p :=\sup \left\{ E_0(x)_{L_p[a,b]}: \; \pm x'(t) > 0 \; \forall t\in (a,b), \;\; a,b\in \rm \bf R \right\},$ and the asymmetric norm $\|\alpha^{-1}x_+^{(r)}+\beta ^{-1}x_-^{(r)}\| _{\infty}$ of its highest derivative are proved, where $E_0(x)_{L_p([a,b])}:= \inf \{\|x - c\|_{L_p([a,b])}: c \in {\rm \bf R }\}$. As a consequence, generalizations of a number of well-known Kolmogorov-type inequalities are obtained.
format Article
id doaj-art-aa09eff8ce424badb5d74db9f1634074
institution Kabale University
issn 2664-4991
2664-5009
language English
publishDate 2024-12-01
publisher Oles Honchar Dnipro National University
record_format Article
series Researches in Mathematics
spelling doaj-art-aa09eff8ce424badb5d74db9f16340742025-01-05T19:33:35ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092024-12-013228810010.15421/242421Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivativeV.A. Kofanov0https://orcid.org/0000-0003-0392-2257Oles Honchar Dnipro National UniversityFor $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local norm of the function $|||x^{\uparrow \downarrow}|||_p :=\sup \left\{ E_0(x)_{L_p[a,b]}: \; \pm x'(t) > 0 \; \forall t\in (a,b), \;\; a,b\in \rm \bf R \right\},$ and the asymmetric norm $\|\alpha^{-1}x_+^{(r)}+\beta ^{-1}x_-^{(r)}\| _{\infty}$ of its highest derivative are proved, where $E_0(x)_{L_p([a,b])}:= \inf \{\|x - c\|_{L_p([a,b])}: c \in {\rm \bf R }\}$. As a consequence, generalizations of a number of well-known Kolmogorov-type inequalities are obtained.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434sharp kolmogorov-type inequalityasymmetric caselocal norm
spellingShingle V.A. Kofanov
Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
Researches in Mathematics
sharp kolmogorov-type inequality
asymmetric case
local norm
title Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
title_full Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
title_fullStr Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
title_full_unstemmed Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
title_short Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
title_sort kolmogorov type inequalities for functions with asymmetric restrictions on the highest derivative
topic sharp kolmogorov-type inequality
asymmetric case
local norm
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434
work_keys_str_mv AT vakofanov kolmogorovtypeinequalitiesforfunctionswithasymmetricrestrictionsonthehighestderivative