Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative
For $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local no...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2024-12-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841558937124470784 |
---|---|
author | V.A. Kofanov |
author_facet | V.A. Kofanov |
author_sort | V.A. Kofanov |
collection | DOAJ |
description | For $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local norm of the function $|||x^{\uparrow \downarrow}|||_p :=\sup \left\{ E_0(x)_{L_p[a,b]}: \; \pm x'(t) > 0 \; \forall t\in (a,b), \;\; a,b\in \rm \bf R \right\},$ and the asymmetric norm $\|\alpha^{-1}x_+^{(r)}+\beta ^{-1}x_-^{(r)}\| _{\infty}$ of its highest derivative are proved, where $E_0(x)_{L_p([a,b])}:= \inf \{\|x - c\|_{L_p([a,b])}: c \in {\rm \bf R }\}$.
As a consequence, generalizations of a number of well-known Kolmogorov-type inequalities are obtained. |
format | Article |
id | doaj-art-aa09eff8ce424badb5d74db9f1634074 |
institution | Kabale University |
issn | 2664-4991 2664-5009 |
language | English |
publishDate | 2024-12-01 |
publisher | Oles Honchar Dnipro National University |
record_format | Article |
series | Researches in Mathematics |
spelling | doaj-art-aa09eff8ce424badb5d74db9f16340742025-01-05T19:33:35ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092024-12-013228810010.15421/242421Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivativeV.A. Kofanov0https://orcid.org/0000-0003-0392-2257Oles Honchar Dnipro National UniversityFor $k, r\in {\rm \bf N}$, $k<r$; $q\ge 1$, $p>0$; $\alpha, \beta>0$ and for functions $x\in L_{\infty}^r({\rm\bf R})$ inequalities that estimate the norm $\|x_{\pm }^{(k)}\|_{L_q[a,b]}$ on an arbitrary segment $[a,b] \subset {\rm\bf R}$ such that $\;x^{(k)}(a)=x^{(k)}(b)=0$ via a local norm of the function $|||x^{\uparrow \downarrow}|||_p :=\sup \left\{ E_0(x)_{L_p[a,b]}: \; \pm x'(t) > 0 \; \forall t\in (a,b), \;\; a,b\in \rm \bf R \right\},$ and the asymmetric norm $\|\alpha^{-1}x_+^{(r)}+\beta ^{-1}x_-^{(r)}\| _{\infty}$ of its highest derivative are proved, where $E_0(x)_{L_p([a,b])}:= \inf \{\|x - c\|_{L_p([a,b])}: c \in {\rm \bf R }\}$. As a consequence, generalizations of a number of well-known Kolmogorov-type inequalities are obtained.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434sharp kolmogorov-type inequalityasymmetric caselocal norm |
spellingShingle | V.A. Kofanov Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative Researches in Mathematics sharp kolmogorov-type inequality asymmetric case local norm |
title | Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative |
title_full | Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative |
title_fullStr | Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative |
title_full_unstemmed | Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative |
title_short | Kolmogorov-type inequalities for functions with asymmetric restrictions on the highest derivative |
title_sort | kolmogorov type inequalities for functions with asymmetric restrictions on the highest derivative |
topic | sharp kolmogorov-type inequality asymmetric case local norm |
url | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/434/434 |
work_keys_str_mv | AT vakofanov kolmogorovtypeinequalitiesforfunctionswithasymmetricrestrictionsonthehighestderivative |