Dynamic mechanical writing of skyrmion-like polar nanodomains
Abstract Ferroelectric materials exhibit a wealth of topological polar structures that hold promise for high-density, energy-efficient information technologies. Ferroelectric polarization configurations can be flipped by non-uniform mechanical stresses and associated lattice deformations and can be...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | npj Quantum Materials |
| Online Access: | https://doi.org/10.1038/s41535-025-00781-4 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Ferroelectric materials exhibit a wealth of topological polar structures that hold promise for high-density, energy-efficient information technologies. Ferroelectric polarization configurations can be flipped by non-uniform mechanical stresses and associated lattice deformations and can be understood in the quasi-static regime based on flexoelectricity, but little is known about the dynamic mechanical excitations that generate topological ferroelectric structures. Here, we discover stable centre-type skyrmion-like polar nanodomains in super-tetragonal BiFeO3 thin films generated by vibrational tapping using scanning probe microscope tips. Vibrational tapping can bidirectionally switch out-of-plane polarization by exerting strong dynamic force onto the elastically soft state emerging from strain-driven morphotropic phase transitions, which may be attributed to unconventional non-linear flexoelectric effects in the large strain-gradient regime. Our study provides a novel pathway into not only dynamic mechanoelectric coupling and topological polar structures, but also dynamic mechanical excitation technologies applicable to various fields. |
|---|---|
| ISSN: | 2397-4648 |