Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System

Highway traffic load, speed, and volume have been increasing continuously over the years. Because of its special structural form, the fatigue problem of a long-span concrete-filled steel tube arch bridge becomes more and more serious. To research the vehicle load spectrum and fatigue vehicle model o...

Full description

Saved in:
Bibliographic Details
Main Authors: Luming Deng, Yulin Deng
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2022/3092579
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850169713982701568
author Luming Deng
Yulin Deng
author_facet Luming Deng
Yulin Deng
author_sort Luming Deng
collection DOAJ
description Highway traffic load, speed, and volume have been increasing continuously over the years. Because of its special structural form, the fatigue problem of a long-span concrete-filled steel tube arch bridge becomes more and more serious. To research the vehicle load spectrum and fatigue vehicle model of a long-span concrete-filled steel tubular arch bridge, the traffic data of the arch bridge were collected using the weight-in-motion system. The vehicle type and vehicle load in the actual traffic flow have strong stochastic characteristics, which cannot be directly applied. Therefore, according to the measured data, 10 representative models are proposed to facilitate the classification and screening of vehicle data. The wheelbase, mass, axle load, and overload data of the representative vehicle types were analysed, and the axle load distribution characteristics of vehicles in different lanes were studied. It is found that the vehicle load is not uniformly distributed in different lanes but concentrated in one lane. Moreover, a vehicle load spectrum for the fatigue assessment of the long-span concrete-filled steel tubular arch bridge is proposed. Based on the fatigue damage equivalence principle, a fatigue vehicle model and a simplified fatigue vehicle model of bridge heavy-duty vehicles are proposed. Compared with the model in the AASHTO specification, it is found that the weight of the local fatigue vehicle load model is 15.1 t heavier than the vehicle model given in the specification. This study could be further referenced in bridge-fatigue life prediction, management and maintenance, etc.
format Article
id doaj-art-a9c85fa2c0d343969adeb90f37ad55af
institution OA Journals
issn 1687-8094
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Advances in Civil Engineering
spelling doaj-art-a9c85fa2c0d343969adeb90f37ad55af2025-08-20T02:20:40ZengWileyAdvances in Civil Engineering1687-80942022-01-01202210.1155/2022/3092579Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion SystemLuming Deng0Yulin Deng1Department of Road and Bridge EngineeringDepartment of Road and Bridge EngineeringHighway traffic load, speed, and volume have been increasing continuously over the years. Because of its special structural form, the fatigue problem of a long-span concrete-filled steel tube arch bridge becomes more and more serious. To research the vehicle load spectrum and fatigue vehicle model of a long-span concrete-filled steel tubular arch bridge, the traffic data of the arch bridge were collected using the weight-in-motion system. The vehicle type and vehicle load in the actual traffic flow have strong stochastic characteristics, which cannot be directly applied. Therefore, according to the measured data, 10 representative models are proposed to facilitate the classification and screening of vehicle data. The wheelbase, mass, axle load, and overload data of the representative vehicle types were analysed, and the axle load distribution characteristics of vehicles in different lanes were studied. It is found that the vehicle load is not uniformly distributed in different lanes but concentrated in one lane. Moreover, a vehicle load spectrum for the fatigue assessment of the long-span concrete-filled steel tubular arch bridge is proposed. Based on the fatigue damage equivalence principle, a fatigue vehicle model and a simplified fatigue vehicle model of bridge heavy-duty vehicles are proposed. Compared with the model in the AASHTO specification, it is found that the weight of the local fatigue vehicle load model is 15.1 t heavier than the vehicle model given in the specification. This study could be further referenced in bridge-fatigue life prediction, management and maintenance, etc.http://dx.doi.org/10.1155/2022/3092579
spellingShingle Luming Deng
Yulin Deng
Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
Advances in Civil Engineering
title Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
title_full Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
title_fullStr Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
title_full_unstemmed Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
title_short Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System
title_sort vehicle load spectrum and fatigue vehicle model of a long span concrete filled steel tube cfst arch bridge based on measured data of weight in motion system
url http://dx.doi.org/10.1155/2022/3092579
work_keys_str_mv AT lumingdeng vehicleloadspectrumandfatiguevehiclemodelofalongspanconcretefilledsteeltubecfstarchbridgebasedonmeasureddataofweightinmotionsystem
AT yulindeng vehicleloadspectrumandfatiguevehiclemodelofalongspanconcretefilledsteeltubecfstarchbridgebasedonmeasureddataofweightinmotionsystem