ZAR1 and ZAR2 orchestrate the dynamics of maternal mRNA polyadenylation during mouse oocyte development

Abstract Background During meiosis, the oocyte genome keeps dormant for a long time until zygotic genome activation. The dynamics and homeostasis of the maternal transcriptome are essential for maternal-to-zygotic transition. Zygotic arrest 1 (ZAR1) and its homolog, ZAR2, are RNA-binding proteins th...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu-Ke Wu, Ruibao Su, Zhi-Yan Jiang, Yun-Wen Wu, Yan Rong, Shu-Yan Ji, Jingwen Liu, Zhuoyue Niu, Zhiyi Li, Yuanchao Xue, Falong Lu, Heng-Yu Fan
Format: Article
Language:English
Published: BMC 2025-05-01
Series:Genome Biology
Subjects:
Online Access:https://doi.org/10.1186/s13059-025-03593-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background During meiosis, the oocyte genome keeps dormant for a long time until zygotic genome activation. The dynamics and homeostasis of the maternal transcriptome are essential for maternal-to-zygotic transition. Zygotic arrest 1 (ZAR1) and its homolog, ZAR2, are RNA-binding proteins that are important for the regulation of maternal mRNA stability. Results Smart-seq2 analysis reveals drastically downregulated maternal transcripts. However, the detection of transcript levels by Smart-seq2 may be biased by the polyadenylated tail length of the mRNAs. Similarly, differential expression of maternal transcripts in oocytes with or without Zar1/2 differs when analyzed using total RNA-seq and Smart-seq2, suggesting an influence of polyadenylation. Combined analyses using total RNA-seq, LACE-seq, PAIso-seq2, and immunoprecipitation-mass spectrometry reveals that ZAR1 may target the 3’-untranslated regions of maternal transcripts, regulates their stability in germinal vesicle stage oocytes, and interacts with other proteins to control the polyadenylation of mRNAs. Conclusions The jointly analyzed multi-omics data highlight the limitations of Smart-seq2 in oocytes, clarify the dynamics of the maternal transcriptome, and uncover new roles of ZAR1 in regulating the maternal transcriptome.
ISSN:1474-760X