Multiple View Summarization Framework for Social Media

Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with diffe...

Full description

Saved in:
Bibliographic Details
Main Authors: Chih-yuan Li, Soon Chun, James Geller
Format: Article
Language:English
Published: LibraryPress@UF 2023-05-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/133169
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.
ISSN:2334-0754
2334-0762